• Projects

Principal investigator:

Prof. Dr. John Ziebuhr

Institut für Medizinische Virologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 41200
E-Mail: john.ziebuhr(at)viro.med.uni-giessen(dot)de


Research area: Molecular Virology
The order Nidovirales (families Coronaviridae, Mesoniviridae, Arteriviridae and Roniviridae) comprises viruses with extremely large RNA genomes and includes important animal and human pathogens, such as SARS and MERS coronavirus. The nidovirus replication/transcription complex (RTC) consists of an exceptionally large number of viral enzymes. This also includes a 3'-5' exoribonuclease (ExoN) presumed to be involved in proofreading mechanisms during viral replication. In the first funding period, the Ziebuhr group characterized the biochemical properties of this enzyme for representative viruses of the subfamilies Corona- and Torovirinae and has extended these studies to other nonstructural proteins (nsp7, 8, 9, 10, 12, 13) that are thought to form the coronavirus/nidovirus "core replicase". Furthermore, essential cis-active RNA elements conserved across the genus Alphacoronavirus were identified and a detailed characterization of the replication/transcription complex of the newly discovered Mesoniviridae was initiated. In this context, the Ziebuhr group characterized the mesonivirus main protease and characterized the proteolytic processing of the mesonivirus "core" replicase. Together, these studies provide the basis for comparative studies of common and distinct mechanisms involved in the replication of nidoviruses with large- (30 kb) and medium-size (20 kb) RNA genomes using biochemical and reverse-genetics approaches.
 
Project-related publications of the investigator:
  • Kanitz M, Blanck S, Heine A, Gulyaeva AA, Gorbalenya AE, Ziebuhr J*, Diederich WE*. Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Virology 2019; 533:21-33. *corresponding authors
  • Tvarogová J, Madhugiri R, Bylapudi G, Ferguson LJ, Karl N, Ziebuhr J. Identification and characterization of a human coronavirus 229E nonstructural protein 8-associated RNA 3'-terminal adenylyltransferase activity. J Virol 2019; 93:e00291-19.
  • Durzynska I, Sauerwald M, Karl N, Madhugiri R, Ziebuhr J. Characterization of a bafinivirus exoribonuclease activity. J Gen Virol 2018; 99:1253-1260.
  • Madhugiri R, Karl N, Petersen D, Lamkiewicz K, Fricke M, Wend U, Scheuer R, Marz M, Ziebuhr J. Structural and functional conservation of cis-acting RNA elements in coronavirus 5'-terminal genome regions. Virology 2018; 517:44-55.
  • Müller C, Hardt M, Schwudke D, Neuman BW, Pleschka S, Ziebuhr J. Inhibition of Cytosolic phospholipase A2alpha impairs an early step of coronavirus replication in cell culture. J Virol 2018; 92:01463-17.
  • Kindler E, Gil-Cruz C, Spanier J, Li Y, Wilhelm J, Rabouw HH, Zust R, Hwang M, V'Kovski P, Stalder H, Marti S, Habjan M, Cervantes-Barragan L, Elliot R, Karl N, Gaughan C, van Kuppeveld FJ, Silverman RH, Keller M, Ludewig B, Bergmann CC, Ziebuhr J, Weiss SR, Kalinke U, Thiel V. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathog 2017; 13:e1006195.
  • Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Müller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M. The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 2017; 13:e1006286.
  • Snijder EJ, Decroly E, Ziebuhr J. The nonstructural proteins directing coronavirus RNA synthesis and processing. Adv Virus Res 2016; 96:59-126.
  • Madhugiri R, Fricke M, Marz M, Ziebuhr J. Coronavirus cis-acting RNA elements. Adv Virus Res 2016; 96:127-163.
  • Minskaia E, Hertzig T, Gorbalenya AE, Campanacci V, Cambillau C, Canard B, Ziebuhr J. Discovery of an RNA virus 3'-5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci USA 2006; 103:5108-5113.
Principal investigator:

Prof. Dr. Roland Hartmann

Institut für Pharmazeutische Chemie
Philipps-Universität Marburg
Marbacher Weg 6
35037 Marburg

Phone: 06421-28 25827
E-Mail: roland.hartmann(at)staff.uni-marburg(dot)de


Principal investigator:

Prof. Dr. Stephan Becker

Sprecher SFB 1021

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66253
E-Mail:
becker(at)staff.uni-marburg(dot)de


Research areas: Molecular Virology / RNA Biochemistry

This project investigates factors and molecular mechanisms involved in Ebola virus (EBOV) transcription, focusing on the EBOV-specific transcription factor VP30, a hexameric phosphoprotein that contains a zinc-finger domain with RNA-binding activity. Viral transcription factor activity of VP30 was previously shown to be largely controlled by the phosphorylation state of this protein. In the first funding period, the Becker and Hartmann groups investigated the RNA-binding and transcriptional regulation activities mediated by VP30. They found that all functions of VP30 involved in RNA binding, such as VP30 phosphorylation, homooligomerization, and the integrity of a zinc finger motif, simultaneously affect the protein’s ability to activate transcription. Interaction between VP30 and the polymerase cofactor VP35 was shown to depend on RNA binding and on the dsRNA binding activity of VP35. VP30 preferentially interacted with single-stranded RNA substrates of mixed base composition; a stem-loop structure, particularly at the 3'-end, further stabilized this binding. RNA binding of VP30 was impaired in the presence of a 5´-Cap(0) structure, and phosphorylation of VP30 inhibited RNA binding. Interestingly, the full transcriptional support activity of VP30 was dependent on a dynamic sequence of phosphorylation/dephosphorylation of N-terminal serine residues, suggesting that both phosphorylated and nonphosphorylated VP30 are essential for different steps of transcription.

Project-related publications of the investigators:
  • Takamatsu Y, Krähling V, Kolesnikova L, Halwe S, Lier C, Baumeister S, Noda T, Biedenkopf NBecker S. Serine-arginine protein kinase 1 regulates Ebola virus transcription. mBio 2020 accepted. MSID mBio02565-19R1
  • Bach S, Biedenkopf N, Grünweller A, Becker SHartmann RK, Hexamer phasing governs transcription initiation in the 3´ leader of Ebola virus. RNA 2020 accepted, MS ID RNA/2019/073718
  • Kruse T, Biedenkopf N, Hertz EPT, Dietzel E, Stalmann G, López-Méndez B, Davey NE, Nilsson J, Becker S. The Ebola Virus Nucleoprotein Recruits the Host PP2A-B56 Phosphatase to Activate Transcriptional Support Activity of VP30. Molecular Cell. 2018 Jan 4;69(1):136-145.e6.
  • Lier C, Becker SBiedenkopf N. Dynamic phosphorylation of Ebola virus VP30 in NP-induced inclusion bodies. Virology. 2017 Dec;512:39-47.
  • Biedenkopf N, Lange-Grünweller K, Schulte FW, Weißer A, Müller C, Becker D, Becker SHartmann RK, Grünweller A. The natural compound silvestrol is a potent inhibitor of Ebola virus replication. Antiviral Research. 2017 Jan;137:76-81. doi: 10.1016/j.antiviral.2016.11.011. Epub 2016 Nov 15.
  • Schlereth J, Grünweller A, Biedenkopf N, Becker SHartmann RK. RNA binding specificity of Ebola virus transcription factor VP30. RNA Biology. 2016 Sep;13(9):783-98. doi: 10.1080/15476286.2016.1194160. Epub 2016 Jun 17.
  • Biedenkopf N, Schlereth J, Grünweller A, Becker SHartmann RK. RNA Binding of Ebola Virus VP30 Is Essential for Activating Viral Transcription. Journal of Virology. 2016 Jul 27;90(16):7481-7496. doi: 10.1128/JVI.00271-16. Print 2016 Aug 15.
  • Biedenkopf N, Lier C, Becker S. Dynamic Phosphorylation of VP30 Is Essential for Ebola Virus Life Cycle. Journal of Virology. 2016 Apr 29;90(10):4914-4925. doi: 10.1128/JVI.03257-15. Print 2016 May 15
  • Biedenkopf N, Hartlieb B, Hoenen T, Becker S. Phosphorylation of Ebola virus VP30 influences the composition of the viral nucleocapsid complex: Impact on viral transcription and replication. Journal of Biological Chemistry, March 2013, doi 10.1074/jbc.M113.461285
  • Martinez MJ, Biedenkopf N, Volchkova V, Hartlieb B, Alazard-Dany N, Reinard O, Becker S, Volchkov V. Role of Ebola virus VP30 in Transcription Reinitiation. Journal of Virology. 2008 Dec;82(24):12569-73. doi: 10.1128/JVI.01395-08. Epub 2008 Oct 1.
Principal investigator:

Prof. Dr. Michael Niepmann

Biochemisches Institut
Justus-Liebig-Universität Gießen
Friedrichstraße 24
35392 Gießen

Phone: 0641-99 47471
E-Mail: michael.niepmann(at)biochemie.
med.uni-giessen(dot)de


Research area: Molecular Virology

To analyze hepatitis C virus minus- and plus-strand synthesis initiation, the Niepmann group developed a split replication system in which the functions of both genome ends can be studied separately. This system differs from previously established HCV replicon systems that, in all cases, required the presence of both genome ends and used genome amplification to monitor viral RNA synthesis. The split replication system provides new and unprecedented insights into HCV replication mechanisms and is of great scientific interest because it is the first system that allows specific cis-acting signals to be linked to specific functions in minus- and plus-strand RNA synthesis, respectively, while uncoupling these functions from overlapping functions of the involved sequences in other steps of the viral life cycle.

Project-related publications of the investigator:
  • Gerresheim GK, Roeb E, Michel AM, Niepmann M. Hepatitis C Virus Downregulates Core Subunits of Oxidative Phosphorylation, Reminiscent of the Warburg Effect in Cancer Cells. Cells. 2019 Nov 8;8(11). pii: E1410. doi: 10.3390/cells8111410. Review (includes also previously unpublished original data).
  • Hu P, Wilhelm J, Gerresheim GK, Shalamova LA, Niepmann M. Lnc-ITM2C-1 and GPR55 Are Proviral Host Factors for Hepatitis C Virus. Viruses. 2019 Jun 13;11(6). pii: E549.
  • Gerresheim GK, Bathke J, Michel AM, Andreev DE, Shalamova LA, Rossbach O, Hu P, Glebe D, Fricke M, Marz M, Goesmann A, Kiniry SJ, Baranov PV, Shatsky IN, Niepmann M. Cellular Gene Expression during Hepatitis C Virus Replication as Revealed by Ribosome Profiling. Int J Mol Sci. 2019 Mar 15;20(6). pii: E1321.
  • Niepmann M, Shalamova LA, Gerresheim GK, Rossbach O. Signals Involved in Regulation of Hepatitis C Virus RNA Genome Translation and Replication. Front Microbiol. 2018 Mar 12;9:395. doi: 10.3389/fmicb.2018.00395. eCollection 2018. Review.
  • Jost I, Shalamova LA, Gerresheim GK, Niepmann M, Bindereif A, Rossbach O. Functional sequestration of microRNA-122 from Hepatitis C Virus by circular RNA sponges. RNA Biol. 2018;15(8):1032-1039.
  • Nieder-Röhrmann A, Dünnes N, Gerresheim GK, Shalamova LA, Herchenröther A, Niepmann M. Cooperative enhancement of translation by two adjacent microRNA-122/Argonaute 2 complexes binding to the 5' untranslated region of hepatitis C virus RNA. J Gen Virol. 2017 Feb;98(2):212-224.
  • Gerresheim GK, Dünnes N, Nieder-Röhrmann A, Shalamova LA, Fricke M, Hofacker I, Höner Zu Siederdissen C, Marz M, Niepmann M. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3' untranslated region: function in replication and influence of RNA secondary structure. Cell Mol Life Sci. 2017 Feb;74(4):747-760.
  • Fricke M, Dünnes N, Zayas M, Bartenschlager R, Niepmann M, Marz M. Conserved RNA secondary structures and long-range interactions in hepatitis C viruses. RNA. 2015 Jul;21(7):1219-32. doi: 10.1261/rna.049338.114.
  • Henke JI, Goergen D, Zheng J, Song Y, Schüttler CG, Fehr C, Jünemann C, Niepmann M. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J. 2008 Dec 17;27(24):3300-10.
  • Song Y, Friebe P, Tzima E, Jünemann C, Bartenschlager R, Niepmann M. The hepatitis C virus RNA 3'-untranslated region strongly enhances translation directed by the internal ribosome entry site. J Virol. 2006 Dec;80(23):11579-88.
Principal investigator:

Prof. Dr. John Ziebuhr

Institut für Medizinische Virologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 41200
E-Mail: john.ziebuhr(at)viro.med.uni-giessen(dot)de


Research area: Molecular Virology 

Feline coronaviruses (FCoVs) are highly prevalent in the cat population and classified into two biotypes: feline enteric coronavirus (FECV) leads to inapparent persistent infections of the gut, whereas feline infectious peritonitis virus (FIPV) causes a systemic disease with fatal outcome. According to the "internal mutation theory", FIPV evolves from FECV by acquiring biotype-changing mutations, which is thought to occur in 5–10% of persistently infected cats. To date, the genetic changes responsible for the biotype switch have not been identified. The unambiguous identification of mutations critically involved in this process requires reverse genetics approaches suitable to produce, characterize, and manipulate genetically defined pairs of FECV-FIPV. The development of reverse genetic systems for FCoV field viruses represents a major technical challenge because these viruses do not grow in standard cell culture systems. In the first CRC 1021 funding period, the Tekes and Ziebuhr groups have resolved this problem and managed to establish reverse genetic systems suitable to produce wild-type and genetically manipulated serotype I field viruses, which will now be employed to identify mutations that contribute to the development of feline infectious peritonitis using both in vitro and in vivo experiments and to study functions of virus-encoded "accessory" proteins in viral pathogenesis.

Project-related publications of the investigators:
  • Lemmermeyer T, Lamp B, Schneider R, Ziebuhr J, Tekes G, Thiel HJ. 2016. Characterization of monoclonal antibodies against feline coronavirus accessory protein 7b. Vet Microbiol 184: 11-19.
  • Thiel V, Thiel HJ, Tekes G. 2014. Tackling feline infectious peritonitis via reverse genetics. Bioengineered 5: 396-400.
  • Bank-Wolf B, Stallkamp I, Wiese S, Moritz A, Tekes G, Thiel HJ. 2014. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis. Vet Microbiol 173: 177-188.
  • Madhugiri R, Fricke M, Marz M, Ziebuhr J. 2014. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 194: 76-89.
  • de Groot, R. J., S. C. Baker, R. Baric, L. Enjuanes, A. E. Gorbalenya, K. V. Holmes, S. Perlman, L. Poon, P. J. M. Rottier, P. J. Talbot, P. C. Y. Woo, and J. Ziebuhr. 2012. FamilyCoronaviridae, p. 806-828. In A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz (ed.), Virus Taxonomy. Elsevier, Amsterdam.
  • Tekes, G., D. Spies., B. Bank-Wolf, V. Thiel and H.-J. Thiel. 2012. A reverse genetic approach to study feline infectious peritonitis. J Virol., JVI.00023-12 [pii], 10.1128/JVI.00023-12.
  • Lamp, B., C. Riedel, G. Roman-Sosa, M. Heimann, S. Jacobi, P. Becher, H.-J. Thiel and T. Rümenapf. 2011. Biosynthesis of classical Swine Fever virus nonstructural proteins. J. Virol. 84: 3607-3620.
  • Züst, R., L. Cervantes-Barragan, M. Habjan, R. Maier, B.W. Neuman, J. Ziebuhr, K.J. Szretter, S.C. Baker, W.  Barchet, M.S. Diamond, S.G. Siddell, B. Ludewig, and V. Thiel. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunol. 12: 137-143.
  • Tekes, G., R. Hofmann-Lehmann, B. Bank-Wolf, R. Maier, H.-J. Thiel and V. Thiel. 2010. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage. J. Virol. 84: 1326-1333.
  • Tekes, G., R. Hofmann, I. Stallkamp, V. Thiel and H.-J. Thiel. 2008. Genome organization and reverse genetic analysis of a type I feline coronavirus. J. Virol. 82: 1851-1859.
  • Ziebuhr, J. 2008. Coronavirus replicative proteins, p. 65-81. In S. Perlman, T. Gallagher, and E. J. Snijder (ed.), Nidoviruses. ASM Press, Washington, DC.
  • Putics, A., A. E. Gorbalenya, and J. Ziebuhr. 2006. Identification of protease and ADP-ribose 1''-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. J. Gen. Virol. 87: 651-656.
  • Minskaia, E., T. Hertzig, A.E. Gorbalenya, V. Campanacci, C. Cambillau, B. Canard, J. Ziebuhr. 2006. Discovery of an RNA virus 3'-5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103: 5108-5113.
  • Putics, A., W. Filipowicz, J. Hall, A.E. Gorbalenya, and J. Ziebuhr. 2005. ADP-ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J. Virol. 79: 12721-12731.
  • Ivanov, K. A., T. Hertzig, M. Rozanov, S. Bayer, V. Thiel, A. E. Gorbalenya, and J. Ziebuhr. 2004. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101: 12694-12699.
  • Conzelmann, K.-K., N. Visser, P. v. Woensel, H.-J.Thiel. 1993. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 193: 329-339.
Principal investigator:

Dr. Mikhail Matrosovich

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 65166
E-Mail: matrosov(at)staff.uni-marburg(dot)de


Principal investigator:

Prof. Dr. Stefan Bauer

Institut für Immunologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66492
E-Mail: stefan.bauer(at)staff.uni-marburg(dot)de


Research area: Molecular Virology/Molecular Immunology

Humans can be infected by seasonal, pandemic, and zoonotic influenza A viruses (IAVs). The hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of these viruses vary substantially depending on viral host species, evolutionary lineage, and strain. The long-term goal of the project is to characterize how this genetic variation affects viral replication, host range, and pathogenicity. During the first funding period, a large panel of fully characterized recombinant IAVs were generated and used to study effects of HA receptor specificity and membrane fusion activity on viral tropism to epithelial and endothelial cells and sensitivity to antiviral innate immune factors. The Matrosovich group found that the pH optimum of HA-mediated membrane fusion in specific IAVs affects their sensitivity to an interferon-induced antiviral state, and that the high pH fusion pH optimum seen in zoonotic H5N1 and H7N9 viruses is responsible for their enhanced tropism to human endothelial cells. Furthermore, the group discovered that adaptation of avian influenza viruses to pigs under natural conditions requires HA mutations that increase the fusion pH optimum. Finally, preliminary evidence was obtained to suggest a role of viral receptor specificity in IAV interactions with human alveolar macrophages and plasmacytoid dendritic cells.

Project-related publications of the principal investigators:
  • Gerlach T, Hensen L, Matrosovich T, Bergmann J, Winkler M, Peteranderl C, Klenk HD, Weber F, Herold S, Pöhlmann S, Matrosovich M. 2017. pH-optimum of hemagglutinin-mediated membrane fusion determines sensitivity of influenza A viruses to the interferon-induced antiviral state and IFITMs. J. Virol., accepted
  • Gambaryan AS, Matrosovich MN. 2015. What adaptive changes in hemagglutinin and neuraminidase are necessary for emergence of pandemic influenza virus from its avian precursor? Biochemistry (Moscow) 80:872-880.
  • Baumann J, Kouassi NM, Foni E, Klenk HD, Matrosovich M. 2015. H1N1 swine influenza viruses differ from avian precursors by a higher pH optimum of membrane fusion. J Virol 90:1569-1577.
  • Wendel I, Rubbenstroth D, Doedt J, Kochs G, Wilhelm J, Staeheli P, Klenk HD, Matrosovich M. 2015. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus. J Virol 89:4170-4179.
  • Wendel I, Matrosovich M, Klenk HD. 2015. SnapShot: Evolution of Human Influenza A Viruses. Cell Host & Microbe 17:416-416.e411.
  • Heider A, Mochalova L, Harder T, Tuzikov A, Bovin N, Wolff T, Matrosovich M, Schweiger B. 2015. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. J Virol 89:5395-5405.
  • Van Poucke S, Doedt J, Baumann J, Qiu Y, Matrosovich T, Klenk HD, Van Reeth K, Matrosovich M. 2015. Role of substitutions in the hemagglutinin in the emergence of the 1968 pandemic influenza virus. J Virol 89:12211-12216.
  • Bottcher-Friebertshauser E, Garten W, Matrosovich M, Klenk HD. 2014. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 385:3-34.
  • Linster M, Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Manz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. 2014. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157:329-339.
  • Hogner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, Walmrath HD, Bodner J, Gattenlohner S, Lewe-Schlosser P, Matrosovich M, Seeger W, Lohmeyer J, Herold S. 2013. Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. Plos Pathog 9:e1003188.
  • Van Poucke S, Uhlendorff J, Wang ZF, Billiau V, Nicholls J, Matrosovich M, Van Reeth K. 2013. Effect of receptor specificity of A/Hong Kong/1/68 (H3N2) influenza virus variants on replication and transmission in pigs. Influenza and Other Respiratory Viruses 7:151-159.
  • Matrosovich M, Herrler G, Klenk HD. 2013. Sialic Acid Receptors of Viruses. Top Curr Chem 20:20.
  • Kolesnikova L, Heck S, Matrosovich T, Klenk HD, Becker S, Matrosovich M. 2013. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. Journal of General Virology 94:971-976.
  • Klenk HD, Garten W, Matrosovich M. 2013. Pathogenesis, p 157-172. In Webster RG (ed), Textbook of Influenza, 2nd Edition. Wiley-Blackwell, Chichester, West Sussex, UK.
  • Crusat M, Liu JF, Palma AS, Childs RA, Liu Y, Wharton SA, Lin YP, Coombs PJ, Martin SR, Matrosovich M, Chen Z, Stevens DJ, Hien VM, Thanh TT, Nhu LNT, Nguyet LA, Ha DQ, van Doorn HR, Hien TT, Conradt HS, Kiso M, Gamblin SJ, Chai WG, Skehel JJ, Hay AJ, Farrar J, de Jong MD, Feizi T. 2013. Changes in the hemagglutinin of H5N1 viruses during human infection - Influence on receptor binding. Virology 447:326-337.
  • Corman VM, Eickmann M, Landt O, Bleicker T, Brunink S, Eschbach-Bludau M, Matrosovich M, Becker S, Drosten C. 2013. Specific detection by real-time reverse-transcription PCR assays of a novel avian influenza A(H7N9) strain associated with human spillover infections in China. Eurosurveillance 18:10-16.
  • Gambaryan, A. S., T. Y. Matrosovich, J. Philipp, V. J. Munster, R. A. Fouchier, G. Cattoli, I. Capua, S. L. Krauss, R. G. Webster, J. Banks, N. V. Bovin, H. D. Klenk, and M. N. Matrosovich. 2012. Receptor-binding profiles of H7 subtype influenza viruses in different host species. J.Virol. 86:4370-4379.
  • Liu, Y., R. A. Childs, T. Matrosovich, S. Wharton, A. S. Palma, W. Chai, R. Daniels, V. Gregory, J. Uhlendorff, M. Kiso, H. D. Klenk, A. Hay, T. Feizi, and M. Matrosovich. 2010. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J.Virol. 84:12069-12074.
  • Childs, R. A., A. S. Palma, S. Wharton, T. Matrosovich, Y. Liu, W. Chai, M. A. Campanero-Rhodes, Y. Zhang, M. Eickmann, M. Kiso, A. Hay, M. Matrosovich, and T. Feizi. 2009. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat.Biotechnol. 27:797-799.
  • Ocana-Macchi, M., M. Bel, L. Guzylack-Piriou, N. Ruggli, M. Liniger, K. C. McCullough, Y. Sakoda, N. Isoda, M. Matrosovich, and A. Summerfield. 2009. Hemagglutinin-dependent tropism of H5N1 avian influenza virus for human endothelial cells. J.Virol. 83:12947-12955.
  • Matrosovich, M., T. Matrosovich, J. Uhlendorff, W. Garten, and H. D. Klenk. 2007. Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology. 361:384-390.
  • Gambaryan, A., S. Yamnikova, D. Lvov, A. Tuzikov, A. Chinarev, G. Pazynina, R. Webster, M. Matrosovich, and N. Bovin. 2005. Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334:276-283.
  • Matrosovich, M. N., T. Y. Matrosovich, T. Gray, N. A. Roberts, and H. D. Klenk. 2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc.Natl.Acad.Sci U.S.A 101:4620-4624.
  • Matrosovich, M., A. Tuzikov, N. Bovin, A. Gambaryan, A. Klimov, M. R. Castrucci, I. Donatelli, and Y. Kawaoka. 2000. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 74:8502-8512.
  • Jung S, von Thülen T, Laukemper V, Pigisch S, Hangel D, Wagner H, Kaufmann A, Bauer S. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand. PLoS One. 2015 Mar 18;10(3):e0120498. doi:10.1371/journal.pone.0120498. eCollection 2015.
  • Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science. 2012 Aug 31;337(6098):1111-5. doi: 10.1126/science.1220363. Epub 2012 Jul 19.
  • Bauer, S., C. J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. Wagner, and G. B. Lipford. 2001. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237-42.
  • Hamm, S., A. Heit, M. Koffler, K. M. Huster, S. Akira, D. H. Busch, H. Wagner, and S. Bauer. 2007. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int Immunol 19:297-304.
  • Hamm, S., E. Latz, D. Hangel, T. Muller, P. Yu, D. Golenbock, T. Sparwasser, H. Wagner, and S. Bauer. 2010. Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215:559-69.
  • Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-9.
  • Heil, F., P. Ahmad-Nejad, H. Hemmi, H. Hochrein, F. Ampenberger, T. Gellert, H. Dietrich, G. Lipford, K. Takeda, S. Akira, H. Wagner, and S. Bauer. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987-97.
  • Jöckel, S., G. Nees, R. Sommer, Y. Zhao, D. Cherkasov, H. Hori, G. Ehm, M. Schnare, M. Nain, A. Kaufmann, and S. Bauer. 2012. The 2'-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med 209:235-41.
  • Jurk, M., F. Heil, J. Vollmer, C. Schetter, A. M. Krieg, H. Wagner, G. Lipford, and S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499.
  • Rutz, M., J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner, and S. Bauer. 2004. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34:2541-50.
Principal investigator:

Prof. Dr. Stephan Becker

Sprecher SFB 1021

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66253
E-Mail:
becker(at)staff.uni-marburg(dot)de


Research area: Molecular Virology

Marburg virus (MARV) causes lethal fever in humans and non-lethal infections in rodents. Sequential passaging of MARV in guinea pigs resulted in a guinea pig-adapted strain that contains 4 non-synonymous mutations and causes lethal disease. Cells of the mononuclear phagocyte system (MPS) were found to be the primary MARV targets in both lethal and non-lethal infection. The Becker group discovered that a single mutation in the viral matrix protein VP40 (D184N) improved the growth of recombinant MARV (rMARVVP40(D184N)) specifically in guinea pig cells. This phenotype correlated with a decreased ability of VP40D184N to suppress viral RNA synthesis in these cells. In primary MPS cells derived from a newly established ex vivo model, rMARVVP40(D184N) had a clear growth advantage over wild-type MARV. This correlated with the observation that rMARVVP40(D184N), in contrast to the non-lethal wild type virus, no longer induced cell death in the infected macrophages or in non-infected bystander cells. Other mutations in the guinea pig-adapted MARV were found to be located in the polymerase (L) coding sequence. One of the mutations located in the polymerase active site was shown to dramatically increase the viral transcription/replication activity.

Project-related publications of the investigator:
  • Dietzel E, Schudt G, Krähling V, Matrosovich M, Becker S. 2016. Functional characterization of adaptive mutations during the West African Ebola virus outbreak. J. Virol. 91:e01913-16.
  • Koehler A, Kolesnikova L, Becker S. 2016. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus. J Gen Virol. 97(10):2494-2500.
  • Koehler A, Kolesnikova L, Welzel U, Schudt G, Herwig A, Becker S. 2016. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner. J Virol 90:1444-1454.
  • Wolff S, Groseth A, Meyer B, Jackson D, Strecker T, Kaufmann A, Becker S. 2016. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. J Gen Virol 97:855-866.
  • Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, Becker S, von Messling V, Maisner A. 2015. Nipah virus matrix protein influences fusogenicity and is essential for particle infectivity and stability. J Virol. 90(5):2514-22.
  • Schudt, G., O. Dolnik, L. Kolesnikova, N. Biedenkopf, A. Herwig and S. Becker. 2015. Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolsvirus-Infected Cells. J. Infect Dis doi: 10.1093/infdis/jiv083
  • Kolesnikova, L., E. Mittler, G. Schudt, H. Shams-Eldin, and S. Becker. 2012. Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Cell Microbiol 14:182-97
  • Mateo, M., C. Carbonnelle, O. Reynard, L. Kolesnikova, K. Nemirov, A. Page, V. A. Volchkova, and V. E. Volchkov. 2011. VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204 Suppl 3:S1011-20.
  • Welsch, S., L. Kolesnikova, V. Krahling, J. D. Riches, S. Becker, and J. A. Briggs. 2010. Electron tomography reveals the steps in filovirus budding. PLoS Pathog 6:e1000875.
  • Krahling, V., O. Dolnik, L. Kolesnikova, J. Schmidt-Chanasit, I. Jordan, V. Sandig, S. Gunther, and S. Becker. 2010. Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection. PLoS Negl Trop Dis 4:e802.
  • Dolnik, O., L. Kolesnikova, and S. Becker. 2008. Filoviruses: Interactions with the host cell. Cell Mol Life Sci 65:756-76.
  • Kolesnikova, L., A. B. Bohil, R. E. Cheney, and S. Becker. 2007. Budding of Marburgvirus is associated with filopodia. Cell Microbiol 9:939-51.
  • Kolesnikova, L., B. Berghofer, S. Bamberg, and S. Becker. 2004. Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78:12277-87.
  • Kolesnikova, L., S. Bamberg, B. Berghofer, and S. Becker. 2004. The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 78:2382-93.
  • Ryabchikova, E. I., L.  Kolesnikova, and S. V. Luchko. 1999. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J Infect Dis 179 Suppl 1:S199-202.
  • Mühlberger, E., B. Lotfering, H.-D. Klenk, and S. Becker. 1998. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72:8756-64.
  • Ryabchikova, E., L. Kolesnikova, M. Smolina, V. Tkachev, L. Pereboeva, S. Baranova, A. Grazhdantseva, and Y. Rassadkin. 1996. Ebola virus infection in guinea pigs: presumable role of granulomatous inflammation in pathogenesis. Arch Virol 141:909-21.
  • Ryabchikova, E., L. Strelets, L. Kolesnikova, O. Pyankov, and A. Sergeev. 1996. Respiratory Marburg virus infection in guinea pigs. Arch Virol 141:2177-90.
Principal investigator:

Prof. Dr. Andrea Maisner

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 65360
E-Mail: maisner(at)staff.uni-marburg(dot)de


Research area: Molecular Virology

Nipah virus (NiV) is a zoonotic BSL-4-classified paramyxovirus that causes clinical infections in pigs and humans. The severity of respiratory symptoms and the frequency of virus transmission by airway secretions clearly differ in the two species. While differences in lung histopathology in tissue samples obtained from NiV-infected pigs and humans have been described, comparative studies on productive NiV replication in organ cultures and primary airway epithelial cells of the two species were lacking. During the previous funding period, the Maisner group was able to define species-specific host factors that influence virus replication by comparing NiV infection in primary bronchial epithelial cultures obtained from both species. The group demonstrated that NiV receptor expression levels are important determinants of the differences in NiV replication kinetics in primary porcine and human respiratory epithelial cells. The studies further revealed that NiV replication kinetics and ephrin-B2 receptor levels not only differ between airway cells from pigs and humans (species-specific variability), but also between cells from different human donors (individual variations). Most recently, the Maisner group discovered that NiV infection of porcine and human airway epithelia poorly induced IFN-ß but caused a substantial upregulation of the type III interferon IFN-λ.

Project-related publications of the investigator:
  • Elvert E, Sauerhering L, & Maisner A (2019). Cytokine induction in Nipah virus infected primary human and porcine bronchial epithelial cells. J Infect Dis; doi: 10.1093/infdis/jiz455. [Epub ahead of print]
  • Ringel M, Heiner A, Behner L, Halwe S, Sauerhering L, Becker N, Dietzel E, Sawatsky B, Kolesnikova L, & Maisner A (2019). Nipah virus induces two inclusion body populations: Identification of novel inclusions at the plasma membrane. PLoS Pathog. 2019 Apr 29;15(4):e1007733.
  • Sauerhering L, Müller H, Behner L, Elvert M, Fehling SK, Strecker T, & Maisner A (2017). Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors. J Gen Virol. 98(10):2447-2453.
  • Bender RR, Muth A, Schneider IC, Friedel T, Hartmann, JA, Maisner A, & Buchholz CJ (2016). Receptor-targeted Nipah virus glycoproteins improve cell-type selective gene delivery and reveal a preference for membrane-proximal cell attachment. PLoS Path 12(6):e1005641.
  • Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, Becker S, von Messling V, & Maisner A (2015). Nipah virus matrix protein influences fusogenicity and is essential for particle infectivity and stability. J. Virol. 90: 2514-2522.
  • Freitag TC, & Maisner A. (2015). Early activation of primary brain microvascular endothelial cells by Nipah virus glycoprotein containing particles. J. Virol. 90: 2706-2709.
  • Lamp B, Dietzel E, Kolesnikova L, Sauerhering L, Erbar S, Weingartl H, & Maisner A (2013). Nipah virus entry and egress from polarized epithelial cells. J. Virol. 87, 3143-3154.
  • Diederich S, Sauerhering L, Weis M, Altmeppen H, Schaschke N, Reinheckel T, Erbar S, & Maisner A (2012). Activation of the Nipah virus fusion protein in MDCK cells is mediated by cathepsin B within the endosome-recycling compartment. J. Virol. 86, 3736-3745.
  • Weise C, Erbar S, Lamp B, Vogt C, Diederich S, & Maisner A (2010). Tyrosine residues in the cytoplasmic domains affect sorting and fusion activity of the Nipah virus glycoproteins in polarized epithelial cells. J. Virol. 84, 7634–7641.
  • Diederich S, Moll M, Klenk HD, & Maisner A (2005). The Nipah virus fusion protein is cleaved within the endosomal compartment. J. Biol. Chem. 280:29899-903.
Principal investigator:

Dr. Thomas Strecker

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 65182
E-Mail:
strecker(at)staff.uni-marburg(dot)de


Research area: Molecular Virology

Lassa virus (LASV) is a zoonotic, hemorrhagic fever-causing virus that is endemic to West Africa.  Approved vaccines or specific antiviral drugs suitable to combat these infections are not available. The primary transmission route of LASV from its reservoir host to humans involves direct exposure to virus-containing rodent excretions. Although the initial infection involves the respiratory tract through inhalation of contaminated dust or fomites, information on LASV infection of human respiratory epithelial cells is limited. In the current funding period, the Strecker group observed that LASV infects polarized bronchial epithelial cells via the apical or basolateral side, while progeny virus particles are released predominantly from the apical surface. Goblet cells and basal cells were identified as initial LASV target cells in a primary human bronchial epithelial cell culture model. Together with collaborators, the Strecker group also solved the three-dimensional architecture of LASV virions and the spike envelope glycoprotein using high-resolution electron cryomicroscopy and tomography techniques.

Project-related publications of the investigator:
  • Olayemi A, Adesina AS, Strecker T, Magassouba N, Fichet-Calvet E., Determining Ancestry between Rodent- and Human-Derived Virus Sequences in Endemic Foci: Towards a More Integral Molecular Epidemiology of Lassa Fever within West Africa. Biology (Basel). 2020 Feb 7;9(2). pii: E26. doi: 10.3390/biology9020026.
  • Watanabe Y, Raghwani J, Allen JD, Seabright GE, Li S, Moser F, Huiskonen JT, Strecker T, Bowden TA, Crispin M. Structure of the Lassa virus glycan shield provides a model for immunological resistance. Proc Natl Acad Sci U S A. 2018 Jun 25. pii: 201803990.
  • Whitmer SLM, Strecker T, Cadar D, Dienes HP, Faber K, Patel K, Brown SM, Davis WG, Klena JD, Rollin PE et al., New Lineage of Lassa Virus, Togo, 2016. Emerg Infect Dis. 2018 Mar;24(3):599-602.
  • Sauerhering L, Müller H, Behner L, Elvert M, Fehling SK, Strecker T, Maisner A. Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors. J Gen Virol. 2017 Oct;98(10):2447-2453.
  • Huber M, Suprunenko T, Ashhurst T, Marbach F, Raifer H, Wolff S, Strecker T et al., IRF9 prevents CD8+ T cell exhaustion in an extrinsic manner during acute LCMV infection. J Virol. 2017 Sep 6. pii: JVI.01219-17.
  • Wolff S, Schultze T, Fehling SK, Mengel JP, Kann G, Wolf T, Eickmann M, Becker S, Hain T, Strecker T. Genome Sequence of Lassa Virus Isolated from the First Domestically Acquired Case in Germany. Genome Announc. 2016 Sep 22;4(5).
  • S. Li, Z. Sun, R. Pryce, M.-L. Parsy, S. K. Fehling, K. Schlie, A. Siebert, W. Garten, T. A. Bowden, T. Strecker, J. T. Huiskonen. Acidic pH-induced Conformations and LAMP1 binding of the Lassa Virus Glycoprotein Spike. PLoS Pathog (2016)
  • S. Wolff, A. Groseth, B. Meyer, D. Jackson, T. Strecker, A. Kaufmann, S. Becker, The New World Arenavirus Tacaribe induces caspase-dependent apoptosis in infected cells. J Gen Virol 10.1099/jgv.0.000403 (2016).
  • S. K. Fehling, T. Noda, A. Maisner, B. Lamp, K. K. Conzelmann, Y. Kawaoka, H. D. Klenk, W. Garten, T. Strecker, The microtubule motor protein KIF13A is involved in intracellular trafficking of the Lassa virus matrix protein Z. Cell Microbiol 15, 315-334 (2013).
  • S. K. Fehling, F. Lennartz, T. Strecker, Multifunctional nature of the arenavirus RING finger protein Z. Viruses 4, 2973-3011 (2012).
Principal investigator:

Prof. Dr. Friedemann Weber

Institut für Virologie
FB Veterinärmedizin
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 38350
E-mail: friedemann.weber(at)vetmed.uni-giessen(dot)de


Research area: Molecular Virology

A key virulence factor of bunyaviruses is the non-structural protein NSs, an inhibitor of the antiviral type I interferon (IFN-alpha/beta) system. Previously, the Weber group demonstrated that NSs of Rift valley fever virus (RVFV) blocks the induction of IFN on the transcriptional level, and degrades the antiviral IFN effector PKR via the proteasome. It remained however unclear how IFN induction and PKR activation occur at all, and how NSs counteracts these processes. In the first CRC 1021 funding period, the Weber group identified two regulatory dsRNA structures, namely the “panhandle” and the intergenic region (IGR) of the viral genome, as activators of RIG-I (and hence IFN induction) and PKR, respectively. Moreover, they discovered that RVFV NSs recruits the cellular F-box type ubiquitin ligase subunits FBXO3 and FBXW11/beta-TRCP1 to destroy the general host cell transcription factor TFIIB-p62 (involved in IFN gene induction) and PKR, respectively. In addition, the Weber group observed that RVFV NSs impairs the nuclear export of host mRNAs and that NSs from other bunyaviruses use different mechanisms to block IFN response and PKR activation in infected cells.

Project-related publications of the investigator:
  • Schoen, A., S. Lau, P. Verbruggen, F. Weber (2020): Elongin C contributes to RNA polymerase II degradation by the interferon antagonist NSs of La Crosse orthobunyavirus. J. Virol. In press
  • Barr, J.D., F. Weber, C. S. Schmaljohn (2020): Bunyaviruses. Chapter 17, Fields Virology, 7th edition. Lippincott Williams & Wilkins – Philadelphia, USA, in press
  • Hölzer, M., A. Schoen, J. Wulle, M. A. Müller, C. Drosten, M. Marz*, F. Weber* (2019): Virus- and interferon alpha-induced transcriptomes of cells from the microbat Myotis daubentonii. iScience, 19, 647–661
  • Lau, S., F. Weber (2019): Nuclear pore protein Nup98 is involved in replication of Rift Valley fever virus and nuclear import of virulence factor NSs. J. Gen. Virol. DOI 10.1099/jgv.0.001347
  • Wuerth, J.D., F. Weber (2019): Ferreting out virus pathogenesis. Nat. Microbiol. 4: 384-385
  • Jones, R., S. Lessoued, K. Meier, S. Devignot, S. Barata, M. Mate, G. Bragagnolo, F. Weber, M. Rosenthal, J. Reguera (2019): Structure and function of the Toscana virus cap-snatching endonuclease. Nucleic Acids Research 47: 10914–10930, doi: 10.1093/nar/gkz838
  • Frantz, R., L. Teubner, T. Schultze, L. La Pietra, C. Müller, K. Gwozdzinski, H. Pillich, T. Hain, M. Weber-Gerlach, G.-D. Panagiotidis, A. Mostafa, F. Weber, M. Rohde, S. Pleschka, T. Chakraborty, M. A. Mraheil (2019): The secRNome of Listeria monocytogenes harbors small non-coding RNAs that are potent inducers of IFN-β. mBio 10, pii: e01223-19
  • Wuerth J.D., M. Habjan, J. Wulle, G. Superti-Furga, A. Pichlmair, F. Weber (2018). NSs protein of Sandfly fever Sicilian phlebovirus counteracts interferon induction by masking the DNA-binding domain of interferon regulatory factor 3. J. Virol. 92: e01202-18
  • Kiening, M., F. Weber, D. Frishman (2017): Conserved RNA structures in the intergenic regions of ambisense viruses. Scientific Reports, Article number: 16625
  • Ferron, F, F. Weber, J. C. de la Torre, J. Reguera (2017): Transcription and replication mechanisms of Bunyaviridae and Arenaviridae L proteins. Virus Research 234:118-134
Principal investigator:

Prof. Dr. Eva Böttcher-Friebertshäuser

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66019
E-mail: friebertshaeuser(at)staff.uni-marburg(dot)de


Research area: Molecular Virology

Proteolytic cleavage of the surface glycoprotein hemagglutinin (HA) of influenza A virus is essential for virus infectivity and spread, and the host cell proteases responsible for this cleavage are promising new drug targets. The Böttcher-Friebertshäuser group identified TMPRSS2 (transmembrane protease serine S1 member 2) and HAT/TMPRSS11D (human airway trypsin-like protease) as human proteases that cleave HA with a monobasic cleavage site in vitro. More recent studies demonstrated that TMPRSS2 is essential for pneumotropism and pathogenesis of H1N1 and H7N9 influenza virus in mice, whereas activation and spread of H3N2 virus into the lung was independent of TMPRSS2 expression. It is thus becoming increasingly clear that HA activation in the respiratory tract is much more complex than previously thought: influenza viruses can differ in their sensitivity to different host cell proteases and the availability of appropriate proteases can vary along the respiratory tract and even in different target cells. This project aims to i) identify the unknown H3-activating protease(s) in mice, ii) validate the protease specificity of HA proteins with monobasic cleavage sites in human respiratory epithelial cells and iii) gain insights into the mechanisms underlying the protease specificity of HA by investigating proteolytic activation of further HA subtypes in TMPRSS2-knockout mice. In addition, the roles of cell tropism and/or virus-induced host responses affecting the protease specificity for different HA subtypes will be analyzed.

Project-related publications of the investigator:
  • Limburg, H., Harbig, A., Bestle, D., Stein, D. A., Moulton, H. M., Jaeger, J., Janga, H., Hardes, K., Koepke, J., Schulte, L., Koczulla, A. R., Schmeck, B., Klenk, H.-D., Böttcher-Friebertshäuser, E.  TMPRSS2 Is the Major Activating Protease of Influenza A Virus in Primary Human Airway Cells and Influenza B Virus in Human Type II Pneumocytes. J. Virol. 2019; 93:e00649-19.
  • Tarnow C, Engels G, Arendt A, Schwalm F, Sediri H, Preuss A, Nelson PS, Garten W, Klenk HD, Gabriel G, Böttcher-Friebertshäuser E. TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice. J Virol. 2014;88:4744-51.
  • Peitsch C, Klenk HD, Garten W, Böttcher-Friebertshäuser E. Activation of Influenza A Viruses by Host Proteases from Swine Airway Epithelium. J Virol. 2014;88:282-91
  • Baron J, Tarnow C, Mayoli-Nüssle D, Schilling E, Meyer D, Hammami M, Schwalm F, Steinmetzer T, Guan Y, Garten W, Klenk HD, Böttcher-Friebertshäuser E. Matriptase, HAT and TMPRSS2 activate the hemagglutinin of H9N2 influenza A viruses. J Virol. 2013;87:1811-20.
  • Böttcher-Friebertshäuser E, Lu Y, Meyer D, Sielaff F, Steinmetzer T, Klenk HD, Garten W. Hemagglutinin activating host cell proteases provide promising drug targets for the treatment of influenza A and B virus infections. Vaccine. 2012;30:7374-80.
  • Böttcher-Friebertshäuser E, Stein DA, Klenk HD, Garten W. Inhibition of influenza virus infection in human airway cell cultures by an antisense peptide-conjugated morpholino oligomer targeting the hemagglutinin-activating protease TMPRSS2. J Virol. 2011;85:1554-62.
  • Böttcher-Friebertshäuser E, Freuer C, Sielaff F, Schmidt S, Eickmann M, Uhlendorff J, Steinmetzer T, Klenk HD, Garten W. Cleavage of influenza virus hemagglutinin by airway proteases TMPRSS2 and HAT differs in subcellular localization and susceptibility to protease inhibitors. J Virol. 2010;84:5605-14.
  • Okumura Y, Takahashi E, Yano M, Ohuchi M, Daidoji T, Nakaya T, Böttcher E, Garten W, Klenk HD, Kido H. Novel type II transmembrane serine proteases, MSPL and TMPRSS13, proteolytically activate membrane fusion activity of the hemagglutinin of highly pathogenic avian influenza viruses and induce their multicycle replication. J Virol. 2010;84:5089-96.
  • Böttcher E, Matrosovich T, Beyerle M, Klenk HD, Garten W, Matrosovich M. Proteolytic activation of influenza viruses by serine proteases TMPRSS2 and HAT from human airway epithelium. J Virol. 2006;80:9896-8.
Principal investigator:

Prof. Dr. Dieter Glebe

Institut für Medizinische Virologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 41246
E-Mail:
dieter.glebe(at)viro.med.uni-giessen(dot)de


Principal investigator:

Prof. Dr. Joachim Geyer

Institut für Pharmakologie und Toxikologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 38404
E-Mail:
joachim.m.geyer(at)vetmed.uni-giessen(dot)de


Research area: Molecular and Medical Virology/Molecular Pharmacology

Hepatitis D virus (HDV) is an enveloped virus containing a small single-stranded circular RNA genome with a viroid-like replication mechanism. HDV can cause acute and chronic liver disease resulting in liver cirrhosis and liver cancer. HDV is a defective virus requiring the presence of hepatitis B virus (HBV) in the same hepatocyte to complete its life cycle. HDV superinfection of chronic hepatitis B patients severely worsens their clinical outcome, although active HDV replication usually leads to an overall suppression of replication and secretion of the coinfecting HBV. In 2012, the liver-specific and differentiation-dependent bile acid (BA) transporter NTCP (Na+/taurocholate co-transporting polypeptide) was identified as a highly species- and organ-specific receptor for HBV and HDV. The Glebe and Geyer groups confirmed this discovery soon after and established (by NTCP transfection) human hepatocyte cell lines, which are highly susceptible for HBV and HDV. This experimental system enables investigation of the influence of HDV coinfection on HBV infection at the cellular level in detail. The project plans to (i) analyze direct effects of HDV infection on HBV replication in coinfected cells, (ii) dissect the role of the two HDV-encoded proteins S-HDAg and L-HDAg in the HBV infection cycle, (iii) analyze the role of ER-stress during HDV/HBV coinfection, (iv) study interactions with innate immunity/interferon stimulated genes (ISGs) under HBV/HDV coinfection/superinfection conditions and (v) investigate possible effects of HDV infection as well as L-HDAg/S-HDAg expression on NTCP expression and trafficking. Taken together, the analyses are expected to elucidate the molecular mechanisms determining the close interaction of HDV and HBV during coinfection. This might contribute to improved therapy options for chronic HDV/HBV coinfected patients by providing targets for HDV-specific therapy that is still missing.

Project-related publications of the investigators:
  • Rasche A, Lehmann F, König A, Goldmann N, Corman VM, Moreira-Soto A, Geipel A, van Riel D, Vakulenko YA, Sander AL, Niekamp H, Kepper R, Schlegel M, Akoua-Koffi C, Souza BFCD, Sahr F, Olayemi A, Schulze V, Petraityte-Burneikiene R, Kazaks A, Lowjaga KAAT, Geyer J, Kuiken T, Drosten C, Lukashev AN, Fichet-Calvet E, Ulrich RG, Glebe D*, Drexler JF*. Highly diversified shrew hepatitis B viruses corroborate ancient origins and divergent infection patterns of mammalian hepadnaviruses. Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):17007-17012. doi: 10.1073/pnas.1908072116. (*shared senior authors).
  • Noppes S, Müller SF, Bennien J, Holtemeyer M, Palatini M, Leidolf R, Alber J, Geyer J. Homo- And Heterodimerization Is a Common Feature of the Solute Carrier Family SLC10 Members. Biol Chem. 2019 400(10), 1371-1384.
  • Gerresheim GK, Bathke J, Michel AM, Andreev DE, Shalamova LA, Rossbach O, Hu P, Glebe D, Fricke M, Marz M, Goesmann A, Kiniry SJ, Baranov PV, Shatsky IN, Niepmann M. Cellular Gene Expression during Hepatitis C Virus Replication as Revealed by Ribosome Profiling. Int J Mol Sci. 2019 Mar 15;20(6).
  • Müller SF, König A, Döring B, Glebe DGeyer J. Characterisation of the Hepatitis B Virus Cross-Species Transmission Pattern via Na+/taurocholate Co-Transporting Polypeptides From 11 New World and Old World Primate Species. PLoS One 2018 13(6), e0199200.
  • de Carvalho Dominguez Souza BF, König A, Rasche A, de Oliveira Carneiro I, Stephan N, Max Corman V, Luise Roppert P, Goldmann N, Kepper R, Franz Müller S, Völker C, Junior Souza de Souza A, Soares Gomes-Gouvêa M, Moreira-Soto A, Stöcker A, Nassal M, Roberto Franke C, Renato Rebello Pinho J, do Carmo Pereira Soares M, Geyer J, Lemey P, Drosten C, Martins Netto E, Glebe D*, Felix Drexler J*. A novel hepatitis B virus species discovered in capuchin monkeys sheds new light on the evolution of primate hepadnaviruses. J Hepatol. 2018 Jun;68(6):1114-1122., (*shared senior authors).
  • König A, Döring B, Mohr C, Geipel A, Geyer JGlebe D. Kinetics of the bile acid transporter and hepatitis B virus receptor Na+/taurocholate cotransporting polypeptide (NTCP) in hepatocytes. J. Hepatol. 2014 October 61,(4) 867-875.
  • Drexler JF, Geipel A, König A, Corman VM, van Riel D, Leijten LM, Bremer CM, Rasche A, Cottontail VM, Maganga GD, Schlegel M, Müller MA, Adam A, Klose SM, Borges Carneiro AJ, Stöcker A, Franke CR, Gloza-Rausch F, Geyer J, Annan A, Adu-Sarkodie Y, Oppong S, Binger T, Vallo P, Tschapka M, Ulrich RG, Gerlich WH, Leroy E, Kuiken T, Glebe D*, Drosten C*. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16151-16156. (*shared senior authors).
  • Döring B, Lütteke T, Geyer J, Petzinger E. The SLC10 Carrier Family: Transport Functions and Molecular Structure 2012. In: M.O. Bevensee (Ed.), Co Transport Systems (pp. 105-168). Elsevier Inc. ISBN: 9780123943163.
  • Bijsmans ITGW, Bouwmeester RAM, Geyer J, Faber KN, van de Graaf SFJ. Homo- and heterodimeric architecture of the human liver Na+-dependent taurocholate cotransporting protein NTCP. Biochem J 2011;441(3):1007-1015.
  • Bremer CM, Sominskaya I, Skrastina D, Pumpens P, Abd El Wahed A, Beutling U, Frank R, Fritz HJ, Hunsmann G, Gerlich WH, Glebe D. N-terminal myristoylation-dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus. J. Hepatol. 2011 Jul;55(1):29-37
Principal investigator:

Prof. Dr. Veronika von Messling

Paul-Ehrlich-Institut
Paul-Ehrlich-Str. 51
63225 Langen

Phone: 06103-777 400
E-mail: veronika.vonmessling(at)pei(dot)de


Research area: Molecular Virology

The genomes of RNA viruses exist as quasispecies, due to the lack of proof-reading ability of their RNA-dependent RNA polymerase. The next-generation sequencing technology has provided new insights into the contribution of this genetic plasticity to adaptation and emergence of resistant variants in vitro, but the role of this plasticity in pathogenesis remains largely unknown. Canine distemper virus (CDV), a non-segmented negative-stranded RNA virus of the Morbillivirus genus in the Paramyxoviridae family, causes a lethal disease in ferrets. The von Messling group has shown that the virus initially amplifies in the immune system and that the subsequent spread to epithelial tissues coincides with the onset of clinical signs and transmission to a new host. Since the infection leads to extensive virus amplification in the respective target tissues, this system is ideally suited to directly characterize the viral genetic plasticity in vivo. First preliminary analyses of the sequence diversity in immune and epithelial tissues revealed distinct differences between virus inoculum and populations found at the end stages of infection. Based on these observations, this project will test the hypothesis that quasispecies contribute to virulence through modulation of dissemination and replication efficiency. It will provide new insights into the contribution of genetic plasticity to Morbillivirus biology, and pinpoint genome regions or motifs that are critical for virulence. The mechanistic concepts and experimental approaches developed in this system may also be applicable to other negative-stranded RNA viruses.

Project-related publications of the investigator:
  • Höper D, Freuling CM, Müller T, Hanke D, von Messling V, Duchow K, Beer M, Mettenleiter TC. High definition viral vaccine strain identity and stability testing using full-genome population data--The next generation of vaccine quality control. Vaccine 2015; 33: 5829-37.
  • Krumm SA, Yan D, Hovingh E, Evers TJ, Enkirch T, Reddy GP, Sun A, Saindane MT,Arrendale RF, Painter G, Liotta DC, Natchus MG, von Messling V, Plemper RK. An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model. Sci. Transl. Med. 2014; 6: 232.
  • Svitek N, Gerhauser I, Goncalves C, Grabski E, Döring M, Kalinke U, Anderson DE, Cattaneo R, von Messling V. Morbillivirus control of the interferon response:relevance of STAT2 and mda5 but not STAT1 for canine distemper virus virulence in ferrets. J. Virol. 2014; 88: 2941-2950.
  • Frenzke M, Sawatsky B, Wong XX, Depeut S, Mateo M, Cattaneo R, von Messling V. Nectin-4-dependent measles virus spread to the cynomolgus monkey tracheal epithelium: role of infecting immune cells infiltrating the lamina propria. 2013; J. Virol. 87: 2526-2534.
  • Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VHJ, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, Ramachandran S, McCray PB, Cichutek K, von Messling V, Lopez M, Cattaneo R. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530-533.
  • Pillet S and von Messling V. Canine distemper virus selectively inhibits apoptosis progression in infected immune cells. J. Virol. 2009; 83: 6279-6287.
  • Anderson D and von Messling V. The region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J. Virol. 2008; 82: 10510-10518.
  • Bonami F, Rudd PA, and von Messling V. Disease duration determines canine distemper virus neurovirulence. J. Virol. 2007; 81: 12066-12070.
  • Rudd PA, Cattaneo R, and von Messling V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J. Virol. 2006; 80: 9361-9370.
  • von Messling V, Milosevic D, Cattaneo R. Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc. Natl. Acad. Sci. 2004; 101: 14216-14221.
Principal investigator:

Prof. Dr. Lienhard Schmitz

Institut für Biochemie
Justus-Liebig-Universität Gießen
Friedrichstraße 24
35392 Gießen

Phone: 0641-99 47570
E-Mail: lienhard.schmitz(at)biochemie.
med.uni-giessen(dot)de


Principal investigator:

Prof. Dr. Stephan Pleschka

Institut für Medizinische Virologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 47750
E-Mail: stephan.pleschka(at)viro.med.uni-giessen(dot)de


Research areas: Biochemistry, Signal Transduction, Virology

Influenza A viruses are characterized by a high degree of genomic plasticity which enables them to quickly adapt to new environmental conditions and to cross species barriers, causing epidemics and occasional pandemics. In the first funding period, CRISPR-Cas9-mediated gene editing was employed to generate mouse lung epithelial cells deficient in specific key proteins of the NF-B pathway. The functional analysis of these cells revealed that NF-κB was not relevant for replication of a mouse-adapted SC35M, while the absence of NF-κB activity increased replication of the non-adapted SC35 virus. The analysis of reassortant viruses showed that the anti-viral effect of NF-B is determined by the IAV genotype. In addition, the group has identified thousands of IAV-regulated phosphorylation sites of host cell and viral proteins were identified in a phospho-proteomic screen, which led to the discovery of new IAV-regulated kinase pathways, phosphorylation motifs, and cellular processes. This first comprehensive phospho-proteomic screen now allows to study the contribution of key phosphorylation sites and newly discovered pathways for IAV replication.

Project-related publications of the investigators:
  • Poppe, M., Wittig, S., Jurida, L., Bartkuhn, M., Wilhelm, J., Müller, H., Beuerlein, K., Karl, N., Bhuju, S., Ziebuhr, J., Schmitz, M.L. and M. Kracht (2017) The NF-κB-dependent and -independent transcriptome and chromatin landscapes of coronavirus 229E-infected human cells. Plos Pathog. 13(3):e1006286.
  • Seibert, M., Krüger, M., Watson, N.A., Sen, O., Daum, J.R., Slotman, J.A., Braun, T., Houtsmuller, A.B., Gorbsky, G.J., Jacob, R., Kracht, M., Higgins, J.M.G. and M.L. Schmitz (2019) CDK1-mediated phosphorylation at H2B serine 6 is required for mitotic chromosome segregation. J. Cell Biol. 218, 1164-1181.
  • Weber, A., Dam, S., Saul, V.V., Kuznetsova, I., Müller, C., Fritz-Wolf, K., Becker, K., Linne, U., Gu, H., Stokes, M.P., Pleschka, S., Kracht, M. and M.L. Schmitz (2019) Phosphoproteome analysis of cells infected with adapted and non-adapted influenza A virus reveals novel pro- and antiviral signaling networks. J. Virol., 93(13). pii: e00528-19.
  • Ritter, O. and M.L. Schmitz (2019) Differential intracellular localization and dynamic nucleocytoplasmic shuttling of homeodomain-interacting protein kinase family members. Biochim. Biophys. Acta Mol Cell Res.1866, 1676-1686.
  • Saul, V.V., Seibert, M., Krüger, M., Jeratsch, S. Kracht, M. and M.L. Schmitz (2019) ULK1/2 restrict the formation of inducible SINT-speckles, a new class of membrane-less organelles controlling the threshold of TBK1 activation. iSCIENCE 19, 527-544.
  • Wiwie C, Kuznetsova I, Mostafa A, Rauch A, Haakonsson A, Barrio-Hernandez I, Blagoev B, Mandrup S, Schmidt HHHW, Pleschka S, Röttger R, Baumbach J. Time-Resolved Systems Medicine Reveals Viral Infection-Modulating Host Targets. Syst Med (New Rochelle). 2019 Mar 28;2(1):1-9. doi: 10.1089/sysm.2018.0013. eCollection 2019.
  • Mostafa A, Abdelwhab EM, Mettenleiter TC, Pleschka S. Zoonotic Potential of Influenza A Viruses: A Comprehensive Overview. Viruses. 2018 Sep 13;10(9). pii: E497. doi: 10.3390/v10090497. Review.
  • Dam S, Kracht M, Pleschka SSchmitz ML. The Influenza A Virus Genotype Determines the Antiviral Function of NF-κN. J Virol. 2016 Aug 12;90(17):7980-90. doi: 10.1128/JVI.00946-16. Print 2016 Sep 1.
  • Kanrai P, Mostafa A, Madhugiri R, Lechner M, Wilk E, Schughart K, Ylösmäki L, Saksela K, Ziebuhr J, Pleschka S. Identification of specific residues in avian influenza A virus NS1 that enhance viral replication and pathogenicity in mammalian systems. J Gen Virol. 2016 Sep;97(9):2135-2148. doi: 10.1099/jgv.0.000542. Epub 2016 Jul 12.
  • Schmier S, Mostafa A, Haarmann T, Bannert N, Ziebuhr J, Veljkovic V, Dietrich U, Pleschka S. In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses. Sci Rep. 2015; 5: 11434. Published online 2015 Jun 19. doi: 10.1038/srep11434
Principal investigator:

Prof. Dr. Michael Kracht

Rudolf-Buchheim-Institut für Pharmakologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 47600
E-Mail: michael.kracht(at)pharma.med.uni-giessen(dot)de


Research areas: Signal Transduction, Molecular Virology

Based on their cell biological experience, the Kracht group has made a major and systematic effort to determine the entire transcriptomes, proteomes and phospho-, acetyl-, and ubiquityl proteomes of human coronavirus (HCoV) 229E-infected cells at high resolution. These data sets revealed hundreds of new HCoV-229E-regulated cellular genes and proteins and also demonstrated that the HCoV-229E M- and N-proteins are heavily phosphorylated and acetylated. Furthermore, the Kracht group determined the chromatin landscape of HCoV-229E-infected cells and found more than 1000 CoV-regulated enhancers. This comprehensive insight into transcriptional and post-transcriptional mechanisms in response to coronavirus infection offers multiple avenues for further investigation of virus-host interactions at the molecular level.

Project-related publications of the investigator:
  • Weber A, Dam S, Saul VV, Kuznetsova I, Muller C, Fritz-Wolf K, Becker K, Linne U, Gu H, Stokes MP, Pleschka S, Kracht M, Schmitz ML. 2019. Phosphoproteome Analysis of Cells Infected with Adapted and Nonadapted Influenza A Virus Reveals Novel Pro- and Antiviral Signaling Networks. J Virol 93(13). pii: e00528-19. doi: 10.1128.
  • Weiterer SS, Meier-Soelch J, Georgomanolis T, Mizi A, Beyerlein A, Weiser H, Brant L, Mayr-Buro C, Jurida L, Beuerlein K, Muller H, Weber A, Tenekeci U, Dittrich-Breiholz O, Bartkuhn M, Nist A, Stiewe T, van IWF, Riedlinger T, Schmitz ML, Papantonis A, Kracht M. 2019. Distinct IL-1alpha-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J 39(1):e101533. doi.
  • Saul VV, Seibert M, Kruger M, Jeratsch S, Kracht M, Schmitz ML. 2019. ULK1/2 Restricts the Formation of Inducible SINT-Speckles, Membraneless Organelles Controlling the Threshold of TBK1 Activation. iScience 19:527-544. doi: 10.1016.
  • Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML, Kracht M. 2018. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Frontiers in Immunology 9:775. doi: 10.3389.
  • Schmitz ML, Shaban MS, Albert BV, Gokcen A, Kracht M. 2018. The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-kappaB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines 6(2). pii: E58. doi: 10.3390.
  • Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Muller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M. 2017. The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 3(3):e1006286. doi: 10.1371.
Principal investigator:

Prof. Dr. Harald Renz

Institut für Laboratoriumsmedizin
Philipps-Universität Marburg
Baldingerstraße
35043 Marburg

Phone: 06421-58 66235
E-Mail:
harald.renz(at)uk-gm(dot)de


Principal investigator:

PD Dr. Chrysanthi Skevaki

Institut für Laboratoriumsmedizin
Philipps-Universität Marburg
Baldingerstraße
35043 Marburg

Phone: 06421-58 63850
E-Mail: chrysanthi.skevaki(at)uk-gm(dot)de


Research areas: Molecular Virology, Immunology, Allergy

Respiratory RNA viruses play an important role in the initiation and exacerbation of chronic inflammatory lung disease, including allergic asthma. Clinically relevant pathogens include influenza virus (IAV), rhinovirus (RV), and respiratory syncytial virus (RSV). In the first funding period, the Renz and Skevaki groups focused on the role of IAV infections in the development of allergic asthma, utilizing a well-established murine animal model of experimental asthma. Surprisingly, they found that a single preceding H1N1 IAV infection rendered the mice resistant to subsequent development of allergic airway inflammation, airway hyperresponsiveness and Th2-immune responses. This protection was dependent on the presence of both CD4+ and CD8+ T effector memory cells. By means of comprehensive in silico analyses, ex vivo T-cell peptide stimulation, and in vivo immunization experiments, two MHC-class I H1N1 peptides and two MHC-class II H1N1 peptides, which cross-react with three ovalbumin-derived peptides, were identified. These data illustrate for the first time heterologous immunity of virus-infected animals towards an allergen.

Project-related publications of the investigators:
  • Taka S, Nikopoulou C, Polyzos A, Megremis S, Skevaki CL, Roumpedaki E, Trochoutsou A, Thanos D, Papadopoulos NG. Effects of cryopreservation on antiviral responses of primary airway epithelial cells. Allergy. 2019 Dec 27.
  • Matricardi PM, Dramburg S, Potapova E, Skevaki CRenz H. Molecular diagnosis for allergen immunotherapy. J Allergy Clin Immunol. 2019 Mar;143(3):831-843.
  • Skevaki CRenz H. Advances in mechanisms of allergic disease 2017. J Allergy Clin Immunol. 2018 Oct 10. pii: S0091-6749(18)31436-2.
  • Potaczek DP, Unger SD, Zhang N, Taka S, Michel S, Akdağ N, Lan F, Helfer M, Hudemann C, Eickmann M, Skevaki C, Megremis S, Sadewasser A, Alashkar Alhamwe B, Alhamdan F, Akdis M, Edwards MR, Johnston SL, Akdis CA, Becker S, Bachert C, Papadopoulos NG, Garn H, Renz H. Development and characterization of DNAzyme candidates demonstrating significant efficiency against human rhinoviruses. J Allergy Clin Immunol. 2018 Aug 14. pii: S0091-6749(18)31139-4.
  • Pusch E, Renz HSkevaki C. Respiratory virus-induced heterologous immunity. Allergo J Int. 2018 Mar 26.
  • Skevaki C, Hudemann C, Matrosovich M, Möbs C, Paul S, Wachtendorf A, Alashkar Alhamwe B, Potaczek DP, Hagner S, Gemsa D, Garn H, Sette A, Renz H. Influenza-derived peptides cross-react with allergens and provide asthma protection. J Allergy Clin Immunol. 2018 Sep;142(3):804-814.
  • Schwarze J, Openshaw P, Jha A, Del Giacco SR, Firinu D, Tsilochristou O, Roberts G, Selby A, Akdis C, Agache I, Custovic A, Heffler E, Pinna G, Khaitov M, Nikonova A, Papadopoulos N, Akhlaq A, Nurmatov U, Renz H, Sheikh A, Skevaki C. Influenza burden, prevention and treatment in asthma - a scoping review by the EAACI influenza in asthma task force. Allergy. 2017 Nov 6.
  • Nilsson L, Brockow K, Alm J, Cardona V, Caubet JC, Gomes E, Jenmalm MC, Lau S, Netterlid E, Schwarze J, Sheikh A, Storsaeter J, Skevaki C, Terreehorst I, Zanoni G. Vaccination and allergy: EAACI position paper, practical aspects. Pediatr Allergy Immunol. 2017 Nov;28(7):628-640.
Principal investigator:

Prof. Dr. med. Susanne Herold

Med. Klinik II, Infektiologie
Justus-Liebig-Universität Gießen
Klinikstraße 36
35392 Giessen

Phone: 0641-98 542552
E-Mail: Susanne.Herold(at)innere.med.uni-giessen(dot)de


Research areas: Pneumology, Infectious Diseases, Cell Biology, Molecular Virology

Influenza A virus (IAV) pneumonia is characterized by severe airway and alveolar injury, followed by stem cell-mediated epithelial repair. This project aims at (i) understanding which host signalling pathways at the virus-host interface drive alveolar epithelial cell repair from distinct lung stem cell niches and (ii) elucidating how viral pathogenicity factors impact these mechanisms, resulting in aggravated damage of the distal lung epithelium and in impaired or aberrant repair after IAV-induced pneumonia. In the previous funding period, the Herold group characterized mechanisms that result in impaired alveolar epithelial barrier function after IAV infection in vivo. Particularly, a newly defined pool of local lung epithelial stem/progenitor cells (EpiSPC) was found to be essential for bronchoalveolar tissue regeneration after IAV-induced injury. Their regenerative response depended on cooperation with mesenchymal cells of the stem cell niche and involved a β-catenin/FGF10/FGFR2b signalling axis as well as epithelial GM-CSF. Furthermore, it was demonstrated that IAV infection of the stem cell niche critically impacts the capacity of EpiSPC to mediate coordinated tissue repair. The distinct role and regulation of GM-CSF in EpiSPC-mediated repair as well as the detailed consequences of IAV infection of the stem cell niche with respect to restitutio ad integrum of the injured lung tissue will be elucidated in the 2nd funding period.

Project-related publications of the investigator:
  • Salwig I, Spitznagel B, Vazquez-Armendariz AI, Khaloogi K, Herold S, Szibor M, Braun T. Bronchioalveolar stem cells are a dominant source for regeneration of distal lung epithelia. EMBO J, 38(12), pii: e102099, 2019.
  • Schmoldt C, Vazquez-Armendariz AI, Shalashova I, Selvakumar B, Bremer CM, Peteranderl C, Witte B, Gattenloehner S, Fink L, Morty RE, Pleschka S, Seeger W. Guenther A, Herold S. IRE-1 signalling as putative therapeutic target for influenza virus-induced pneumonia. Am J Respir Cell Mol Biol 61(4):537-40, 2019
  • El Agha E, Moiseenko A, Kheirollahi V, De Langhe S, Kosanovic D, Schwind F, Schermuly RT, Henneke I, MacKenzie B, Quantius J, Herold S, Ntokou A, Ahlbrecht K, Morty RE, Günther A, Seeger W and Bellusci S. Two-Way Conversion between Lipogenic and Myogenic Fibroblastic Phenotypes Marks the Progression and Resolution of Lung Fibrosis. Cell Stem Cell 20(2):261-273, 2017
  • Quantius J, Schmoldt C, Becker C, El Agha E, Wilhelm J, Morty RE, Vadasz I, Mayer K, Gattenloehner S, Fink L, Matrosovich M, Seeger W, Lohmeyer J, Bellusci S, Herold S. Influenza virus infects epithelial stem/progenitor cells of the distal lung: impact on Fgfr2b-driven epithelial repair. PLoS Pathog 12(6):e1005544, 2016
  • Peteranderl C, Morales-Nebreda L, Selvakumar B, Lecuona E, Vadász I, Morty RE, Schmoldt C, Bespalowa J, Wolff T, Pleschka S, Mayer K, Gattenloehner S, Fink L, Lohmeyer J, Seeger W, Sznajder JI, Mutlu G, Budinger GRS, Herold S. Macrophage-epithelial paracrine crosstalk inhibits lung edema clearance during influenza infection. J Clin Invest 126(4):1566-80, 2016
  • Herold S, Hoegner K, Vadász I, Gessler T, Wilhelm J, Mayer K, Morty RE, Walmrath HD, Seeger W, Lohmeyer J. Inhaled GM-CSF as treatment of pneumonia-associated acute respiratory distress syndrome. Am J Respir Crit Care Med. 189(5):609-11, 2014
  • Unkel B, Hoegner K, Clausen BE, Lewe-Schlosser P, Bodner J, Gattenloehner S, Seeger W, Lohmeyer J, Herold S. Alveolar epithelial cells orchestrate dendritic cell functions by release of granulocyte-macophage colony stimulating factor in influenza virus pneumonia. J Clin Invest 122:3652-64, 2012
  • Herold S, Shafiei Tabar T, Janßen H, Högner, K, Cabanski M, Lewe-Schlosser P, Albrecht J, Driever F, Vadasz I, Seeger W, Steinmüller M, Lohmeyer J. Exudate macrophages attenuate epithelial injury by the release of IL-1 receptor antagonist in gram-negative pneumonia. Am J Respir Crit Care Med 183:1380-90, 2011
  • Cakarova L, Marsh L, Wilhelm J, Mayer K, Grimminger F, Seeger W, Lohmeyer J, Herold S. Macrophage tumor necrosis factor-alpha induces epithelial expression of granulocyte macrophage- colony stimulating factor: impact on alveolar epithelial repair. Am J Respir Crit Care Med 180:521-32, 2009
  • Herold S, Steinmueller M, von Wulffen W, Cakarova L, Pinto R, Pleschka S, Mack M, Kuziel WA, Seeger W, Lohmeyer J. Lung epithelial apoptosis in influenza virus pneumonia: The role of macrophage TNF-related apoptosis-inducing ligand. J Exp Med 205(13):3065-77, 2008
Principal investigator:

Dr. Jochen Wilhelm

Univ. of Gießen Lung Center
German Lung Research Center
Justus-Liebig-Universität Gießen
Gaffkystraße 11
35392 Gießen

Phone: 0641-99 42545
E-Mail: jochen.wilhelm(at)patho.med.uni-giessen(dot)de


Principal investigator:

PD Dr. Torsten Hain

German Center of Infection
Institut für Medizinische Mikrobiologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 39860
E-Mail: torsten.hain(at)mikrobio.med.uni-giessen(dot)de


Research area: Molecular Virology

Complete viral genome analyses and transcriptomics studies of virus-infected host cells have become key technologies in the field of RNA virus research. Recent advances in next-generation sequencing (NGS) and microarray technologies resulted in higher throughput, improved accuracy and lower costs. The technical improvements and the wealth of information obtained from these technologies make them extremely valuable tools for studying RNA viruses and virus-host interactions in vitro and in vivo. The microarray facility of Z02 will provide the infrastructure to plan and perform whole transcriptome analyses using the Agilent microarray platform. The available microarrays encompass all known protein-coding genes and more than 30,000 unique long non-coding RNAs (lncRNA), the latter being suggested to play important roles in virus replication. Also, expression profiles obtained in these analyses will be linked to information on viral and cellular non-coding RNA-associated interactions provided by recently developed databases such as ViRBase. The NGS infrastructure of Z02 project will perform (i) whole transcriptome analyses using RNA-seq (ii) targeted resequencing (including amplicon sequencing), (iii) tRNA-seq and (iv) RNA virus genome sequencing for all members of the CRC. Furthermore (v), viral RNA genome quasispecies will be analyzed using  recently established protocols suitable to generate “PCR and sequencing error bias free” NGS datasets and study true genetic variants of RNA virus genomes by circle sequencing (Cir-seq). NGS via RNA-seq of host cells will be used to (vi) analyze samples for which appropriate DNA microarrays are not (yet) available or (vii) obtain parallel sequence information for both host cell and virus (Dual-seq) including single-cell RNA sequencing (scRNA-seq) of virus-infected/mock-infected cells. The Z02 project will provide biostatistical support in the planning of microarray and NGS experiments, generate genome sequencing and expression profiling data and apply bioinformatics methods, such as over-representation and gene-set enrichment analyses, to identify specific signalling pathways and regulatory networks relevant to specific RNA virus infections. Together with other CRC1021 researchers, we will provide additional training (sample preparation, bioinformatics) to PhD students and postdocs using these technologies in their projects. Also, we will contribute to developing hypotheses and writing manuscripts arising from data generated in the Z02 project.

Project-related publications of the investigators:
  • Shrestha A, Carraro G, Nottet N, Vazquez-Armendariz AI, Herold S, Cordero J, Singh I, Wilhelm J, Barreto G, Morty R, El Agha E, Mari B, Chen C, Zhang JS, Chao CM, Bellusci S. A critical role for miR-142 in alveolar epithelial lineage formation in mouse lung development. Cell Mol Life Sci. 2019;76(14):2817-2832.
  • Hu P, Wilhelm J, Gerresheim GK, Shalamova LA, Niepmann M. Lnc-ITM2C-1 and GPR55 are proviral host factors for hepatitis C virus. Viruses. 2019;11(6). pii: E549.
  • Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Müller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M.  The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog. 2017;13(3):e1006286.
  • Rodríguez-Gil A, Ritter O, Saul VV, Wilhelm J, Yang CY, Grosschedl R, Imai Y, Kuba K, Kracht M, Schmitz ML. The CCR4-NOT complex contributes to repression of major histocompatibility complex class II transcription. Sci Rep. 2017;7(1):3547.
  • Ehmann R, Kristen-Burmann C, Bank-Wolf B, König M, Herden C, Hain T, Thiel HJ, Ziebuhr J, Tekes G. Reverse Genetics for Type I Feline coronavirus field isolate to study the molecular pathogenesis of feline infectious peritonitis. mBio. 2018;9(4). pii: e01422-18.
  • Whitmer SLM, Strecker T, Cadar D, Dienes HP, Faber K, Patel K, Brown SM, Davis WG, Klena JD, Rollin PE, Schmidt-Chanasit J, Fichet-Calvet E, Noack B, Emmerich P, Rieger T, Wolff S, Fehling SK, Eickmann M, Mengel JP, Schultze T, Hain T, Ampofo W, Bonney K, Aryeequaye JND, Ribner B, Varkey JB, Mehta AK, Lyon GM 3rd, Kann G, De Leuw P, Schuettfort G, Stephan C, Wieland U, Fries JWU, Kochanek M, Kraft CS, Wolf T, Nichol ST, Becker S, Ströher U, Günther S. New Lineage of Lassa Virus, Togo, 2016. Emerg Infect Dis. 2018;24(3):599-602.
  • ReferenceSeeker: rapid determination of appropriate reference genomes. Schwengers O, Hain T, Chakraborty T, Goesmann A.  Journal of Open Source Software. 2020;5(46), 1994.
  • ASA³P: an automatic and scalable pipeline for the assembly, annotation and higher level analysis of closely related bacterial isolates. Schwengers O, Hoek A, Fritzenwanker M, Falgenhauer L, Hain T, Chakraborty T, Goesmann A, PLoS Computational Biology, 2020; in press.
Principal investigator:

Prof. Dr. Michael Kracht

Rudolf-Buchheim-Institut für Pharmakologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 47600
E-Mail: michael.kracht(at)pharma.med.uni-giessen(dot)de


Principal investigator:

Dr. Uwe Linne

Fachbereich Chemie
Philipps-Universität Marburg
Hans-Meerwein-Str. 4
35043 Marburg

Phone: 06421-28 25618
E-Mail: linneu(at)staff.uni-marburg(dot)de


Research area: Proteomics, PTM-analysis

Viral infection of target cells results in multiple alterations at the level of cellular signaling, transcription and translation to enable viral replication and to fight off cellular antiviral responses. Viral proteins interact with specific subsets of host cell proteins and are post-translationally modified by host cell enzymes. In turn, the virus infection affects expression rates of host cell proteins and their modification status either directly or indirectly. Changes at the level of the proteome precede or are a (direct) consequence of transcriptome changes. Additionally, both events can occur uncoupled. Thus, understanding proteome changes in relation to transcriptome alterations is instrumental to develop a holistic view on virus/cell interactions. The central aim of the Z03 project is to enable CRC1021 projects to investigate these aspects at a proteome-wide level quantitatively and with high resolution. To achieve this goal, the expertise from the group of M.Kracht in application of proteomics techniques to RNA virus biology will be combined with the expertise of U.Linne, who is heading a high-end mass spectrometry facility at the Faculty of Chemistry, Marburg. The facility is fully equipped with state of the art mass spectrometers including Orbitraps Velos Pro and XL (Thermo Scientific) and a Synapt G2Si, all connected to nanoHPLCs. Z03 will provide standardized work flows to study (i) protein-protein interactions, (ii) protein expression levels and (iii) post-translational modifications (PTM) of proteins. Additionally, mass spectrometric standard methods for quality control, amino acid sequence and mass determination of purified proteins will be provided to all members of CRC1021. These approaches can be used to study the interaction of viral components with host cells proteins or between host cell proteins including identification of proteins in samples derived from specific tagging strategies or the usage of cell-permeable crosslinkers  . Quantitative changes of expression across entire proteomes will be analyzed using stable isotope labelling strategies or label-free quantification methods. Phosphorylated, ubiquitylated or acetylated peptides will be enriched from denatured lysates by antibodies recognizing K-ε-G-G motifs or acetylated lysines or by immobilized metal ion affinity chromatography (IMAC) and will be identified by LC-MS/MS. A specific further aim of the Z03 project is to provide sophisticated analysis work flows for the resulting large data sets. This includes summary tables, detailed statistics and visualizations of modified and regulated residues mapped to peptides and genes as well as identification of consensus motifs and de novo motif searches for regulated subgroups of peptides. A work flow that has already been established in the R biostatistics environment by Dr. Axel Weber in the Kracht group (C02) will enable identification of statistically enriched components of KEGG or GO pathways, pathway mapping, protein network analyses and publication-ready visualizations using Cytoscape, STRING and several additional bioinformatics tools.

Project-related publications of the investigators:
  • Weber A, Dam S, Saul VV, Kuznetsova I, Muller C, Fritz-Wolf K, Becker K, Linne U, Gu H, Stokes MP, Pleschka S, Kracht M, Schmitz ML. 2019. Phosphoproteome Analysis of Cells Infected with Adapted and Nonadapted Influenza A Virus Reveals Novel Pro- and Antiviral Signaling Networks. J Virol 93(13). pii: e00528-19. doi: 10.1128
  • Weiterer SS, Meier-Soelch J, Georgomanolis T, Mizi A, Beyerlein A, Weiser H, Brant L, Mayr-Buro C, Jurida L, Beuerlein K, Muller H, Weber A, Tenekeci U, Dittrich-Breiholz O, Bartkuhn M, Nist A, Stiewe T, van IWF, Riedlinger T, Schmitz ML, Papantonis A, Kracht M. 2019. Distinct IL-1alpha-responsive enhancers promote acute and coordinated changes in chromatin topology in a hierarchical manner. EMBO J 39(1):e101533. doi: 10.15252.
  • Meier-Soelch J, Jurida L, Weber A, Newel D, Kim J, Braun T, Schmitz ML, Kracht M. 2018. RNAi-Based Identification of Gene-Specific Nuclear Cofactor Networks Regulating Interleukin-1 Target Genes. Frontiers in Immunology 9:775. doi: 10.3389.
  • Schmitz ML, Shaban MS, Albert BV, Gokcen A, Kracht M. 2018. The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-kappaB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines 6(2). pii: E58. doi: 10.3390.
  • Poppe M, Wittig S, Jurida L, Bartkuhn M, Wilhelm J, Muller H, Beuerlein K, Karl N, Bhuju S, Ziebuhr J, Schmitz ML, Kracht M. 2017. The NF-kappaB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathog 13(3):e1006286. doi: 10.1371.
  • Brühl J, Trautwein J, Schäfer A, Linne U, Bouazoune K. 2019 The DNA repair protein SHPRH is a nucleosome-stimulated ATPase and a nucleosome-E3 ubiquitin ligase. Epigenetics Chromatin. 12(1):52. doi:10.1186.
  • Robledo M, Schlüter JP, Loehr LO, Linne U, Albaum SP, Jiménez-Zurdo JI, Becker A 2018. An sRNA and Cold Shock Protein Homolog-Based Feedforward Loop Post-transcriptionally Controls Cell Cycle Master Regulator CtrA. Front Microbiol. 9:763. doi:10.3389.
  • Nickel AI, Wäber NB, Gößringer M, Lechner M, Linne U, Toth U, Rossmanith W, Hartmann RK 2017. Minimal and RNA-free RNase P in Aquifex aeolicus. Proc Natl Acad Sci U S A. 114(42):11121–11126. doi:10.1073.
  • Hajipour MJ, Ghasemi F, Aghaverdi H, Raoufi M, Linne U, Atyabi F, Nabipour I, Azhdarzadeh M, Derakhshankhah H, Lotfabadi A, Bargahi A, Alekhamis Z, Aghaie A, Hashemi E, Tafakhori A, Aghamollaii V, Mashhadi MM, Sheibani S, Vani H, Mahmoudi M 2017. Sensing of Alzheimer's Disease and Multiple Sclerosis Using Nano-Bio Interfaces. J Alzheimers Dis. 59(4):1187–1202. doi:10.3233.
  • Bertram K, Valcu CM, Weitnauer M, Linne U, Görlach A. 2015. NOX1 supports the metabolic remodeling of HepG2 cells. PLoS One. 10(3):e0122002. doi:10.1371.
Principal investigator:

Prof. Dr. Stefan Bauer

Institut für Immunologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66492
E-Mail: stefan.bauer(at)staff.uni-marburg(dot)de


Research area: Molecular Immunology

Viral RNA is sensed by various pattern recognition receptors such as Toll-like receptors and RIG-I like helicases (RLH) leading to immune activation and type I interferon production. Several viral evasion strategies targeting signal transduction or modifying 5’ RNA ends have been described. However, RNA modifications such as 2’-O-methylation or N6-methyladenosine that antagonize or negatively modulate TLR7-mediated RNA recognition have not been considered. This proposal addresses the possible role of host cell-derived 2’-O-methylations in genomic influenza A virus (IAV) RNA and predicted host-specific methylation differences for altered immune response, infectivity and pathogenicity. In addition, we will analyze the effect of antagonistic 2’-O-methylated host cell tRNA, that is associated with VSV or SeV, on early immune escape from TLR7 recognition in plasmacytoid dendritic cells. Importantly, we will also investigate the currently unknown function of N6-methyladenosine  (m6A) in influenza mRNA. Since the number and position of predicted m6A methylation sites in IAV mRNA strongly vary among different IAV strains, we hypothesize an influence on immune recognition, viral replication and/or pathogenicity.

Overall, this analysis will provide a more sophisticated understanding of the immune response to virus infection or pathogenicity and may lead to new approaches for antiviral drug development. Project-related publications of the investigator:
  • Jung S, von Thülen T, Laukemper V, Pigisch S, Hangel D, Wagner H, Kaufmann A, Bauer S. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand. PLoS One. 2015 Mar 18;10(3):e0120498. doi:10.1371/journal.pone.0120498. eCollection 2015.
  • Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science. 2012 Aug 31;337(6098):1111-5. doi: 10.1126/science.1220363. Epub 2012 Jul 19.
  • Bauer, S., C. J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. Wagner, and G. B. Lipford. 2001. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237-42.
  • Hamm, S., A. Heit, M. Koffler, K. M. Huster, S. Akira, D. H. Busch, H. Wagner, and S. Bauer. 2007. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int Immunol 19:297-304.
  • Hamm, S., E. Latz, D. Hangel, T. Muller, P. Yu, D. Golenbock, T. Sparwasser, H. Wagner, and S. Bauer. 2010. Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215:559-69.
  • Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-9.
  • Heil, F., P. Ahmad-Nejad, H. Hemmi, H. Hochrein, F. Ampenberger, T. Gellert, H. Dietrich, G. Lipford, K. Takeda, S. Akira, H. Wagner, and S. Bauer. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987-97.
  • Jöckel, S., G. Nees, R. Sommer, Y. Zhao, D. Cherkasov, H. Hori, G. Ehm, M. Schnare, M. Nain, A. Kaufmann, and S. Bauer. 2012. The 2'-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med 209:235-41.
  • Jurk, M., F. Heil, J. Vollmer, C. Schetter, A. M. Krieg, H. Wagner, G. Lipford, and S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499.
  • Rutz, M., J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner, and S. Bauer. 2004. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34:2541-50.