• Projects

Project completed:

Principal investigator:

Prof. Dr. Stefan Bauer

Institut für Immunologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66492
E-Mail: stefan.bauer(at)staff.uni-marburg(dot)de


Research area: Molecular Immunology

Viral RNA is sensed by various pattern recognition receptors such as Toll-like receptors and RIG-I like helicases (RLH) leading to immune activation and type I interferon production. Several viral evasion strategies targeting signal transduction or modifying 5’ RNA ends have been described. However, RNA modifications such as 2’-O-methylation or N6-methyladenosine that antagonize or negatively modulate TLR7-mediated RNA recognition have not been considered. This proposal addresses the possible role of host cell-derived 2’-O-methylations in genomic influenza A virus (IAV) RNA and predicted host-specific methylation differences for altered immune response, infectivity and pathogenicity. In addition, we will analyze the effect of antagonistic 2’-O-methylated host cell tRNA, that is associated with VSV or SeV, on early immune escape from TLR7 recognition in plasmacytoid dendritic cells. Importantly, we will also investigate the currently unknown function of N6-methyladenosine  (m6A) in influenza mRNA. Since the number and position of predicted m6A methylation sites in IAV mRNA strongly vary among different IAV strains, we hypothesize an influence on immune recognition, viral replication and/or pathogenicity.

Overall, this analysis will provide a more sophisticated understanding of the immune response to virus infection or pathogenicity and may lead to new approaches for antiviral drug development. Project-related publications of the investigator:
  • Jung S, von Thülen T, Laukemper V, Pigisch S, Hangel D, Wagner H, Kaufmann A, Bauer S. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand. PLoS One. 2015 Mar 18;10(3):e0120498. doi:10.1371/journal.pone.0120498. eCollection 2015.
  • Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science. 2012 Aug 31;337(6098):1111-5. doi: 10.1126/science.1220363. Epub 2012 Jul 19.
  • Bauer, S., C. J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. Wagner, and G. B. Lipford. 2001. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237-42.
  • Hamm, S., A. Heit, M. Koffler, K. M. Huster, S. Akira, D. H. Busch, H. Wagner, and S. Bauer. 2007. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int Immunol 19:297-304.
  • Hamm, S., E. Latz, D. Hangel, T. Muller, P. Yu, D. Golenbock, T. Sparwasser, H. Wagner, and S. Bauer. 2010. Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215:559-69.
  • Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-9.
  • Heil, F., P. Ahmad-Nejad, H. Hemmi, H. Hochrein, F. Ampenberger, T. Gellert, H. Dietrich, G. Lipford, K. Takeda, S. Akira, H. Wagner, and S. Bauer. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987-97.
  • Jöckel, S., G. Nees, R. Sommer, Y. Zhao, D. Cherkasov, H. Hori, G. Ehm, M. Schnare, M. Nain, A. Kaufmann, and S. Bauer. 2012. The 2'-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med 209:235-41.
  • Jurk, M., F. Heil, J. Vollmer, C. Schetter, A. M. Krieg, H. Wagner, G. Lipford, and S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499.
  • Rutz, M., J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner, and S. Bauer. 2004. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34:2541-50.
Principal investigator:

Prof. Dr. John Ziebuhr

Institut für Medizinische Virologie
Justus-Liebig-Universität Gießen
Schubertstraße 81
35392 Gießen

Phone: 0641-99 41200
E-Mail: john.ziebuhr(at)viro.med.uni-giessen(dot)de


Research area: Molecular Virology 

Feline coronaviruses (FCoVs) are highly prevalent in the cat population and classified into two biotypes: feline enteric coronavirus (FECV) leads to inapparent persistent infections of the gut, whereas feline infectious peritonitis virus (FIPV) causes a systemic disease with fatal outcome. According to the "internal mutation theory", FIPV evolves from FECV by acquiring biotype-changing mutations, which is thought to occur in 5–10% of persistently infected cats. To date, the genetic changes responsible for the biotype switch have not been identified. The unambiguous identification of mutations critically involved in this process requires reverse genetics approaches suitable to produce, characterize, and manipulate genetically defined pairs of FECV-FIPV. The development of reverse genetic systems for FCoV field viruses represents a major technical challenge because these viruses do not grow in standard cell culture systems. In the first CRC 1021 funding period, the Tekes and Ziebuhr groups have resolved this problem and managed to establish reverse genetic systems suitable to produce wild-type and genetically manipulated serotype I field viruses, which will now be employed to identify mutations that contribute to the development of feline infectious peritonitis using both in vitro and in vivo experiments and to study functions of virus-encoded "accessory" proteins in viral pathogenesis.

Project-related publications of the investigators:
  • Lemmermeyer T, Lamp B, Schneider R, Ziebuhr J, Tekes G, Thiel HJ. 2016. Characterization of monoclonal antibodies against feline coronavirus accessory protein 7b. Vet Microbiol 184: 11-19.
  • Thiel V, Thiel HJ, Tekes G. 2014. Tackling feline infectious peritonitis via reverse genetics. Bioengineered 5: 396-400.
  • Bank-Wolf B, Stallkamp I, Wiese S, Moritz A, Tekes G, Thiel HJ. 2014. Mutations of 3c and spike protein genes correlate with the occurrence of feline infectious peritonitis. Vet Microbiol 173: 177-188.
  • Madhugiri R, Fricke M, Marz M, Ziebuhr J. 2014. RNA structure analysis of alphacoronavirus terminal genome regions. Virus Res 194: 76-89.
  • de Groot, R. J., S. C. Baker, R. Baric, L. Enjuanes, A. E. Gorbalenya, K. V. Holmes, S. Perlman, L. Poon, P. J. M. Rottier, P. J. Talbot, P. C. Y. Woo, and J. Ziebuhr. 2012. FamilyCoronaviridae, p. 806-828. In A. M. Q. King, M. J. Adams, E. B. Carstens, and E. J. Lefkowitz (ed.), Virus Taxonomy. Elsevier, Amsterdam.
  • Tekes, G., D. Spies., B. Bank-Wolf, V. Thiel and H.-J. Thiel. 2012. A reverse genetic approach to study feline infectious peritonitis. J Virol., JVI.00023-12 [pii], 10.1128/JVI.00023-12.
  • Lamp, B., C. Riedel, G. Roman-Sosa, M. Heimann, S. Jacobi, P. Becher, H.-J. Thiel and T. Rümenapf. 2011. Biosynthesis of classical Swine Fever virus nonstructural proteins. J. Virol. 84: 3607-3620.
  • Züst, R., L. Cervantes-Barragan, M. Habjan, R. Maier, B.W. Neuman, J. Ziebuhr, K.J. Szretter, S.C. Baker, W.  Barchet, M.S. Diamond, S.G. Siddell, B. Ludewig, and V. Thiel. 2011. Ribose 2'-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nature Immunol. 12: 137-143.
  • Tekes, G., R. Hofmann-Lehmann, B. Bank-Wolf, R. Maier, H.-J. Thiel and V. Thiel. 2010. Chimeric feline coronaviruses that encode type II spike protein on type I genetic background display accelerated viral growth and altered receptor usage. J. Virol. 84: 1326-1333.
  • Tekes, G., R. Hofmann, I. Stallkamp, V. Thiel and H.-J. Thiel. 2008. Genome organization and reverse genetic analysis of a type I feline coronavirus. J. Virol. 82: 1851-1859.
  • Ziebuhr, J. 2008. Coronavirus replicative proteins, p. 65-81. In S. Perlman, T. Gallagher, and E. J. Snijder (ed.), Nidoviruses. ASM Press, Washington, DC.
  • Putics, A., A. E. Gorbalenya, and J. Ziebuhr. 2006. Identification of protease and ADP-ribose 1''-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. J. Gen. Virol. 87: 651-656.
  • Minskaia, E., T. Hertzig, A.E. Gorbalenya, V. Campanacci, C. Cambillau, B. Canard, J. Ziebuhr. 2006. Discovery of an RNA virus 3'-5' exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103: 5108-5113.
  • Putics, A., W. Filipowicz, J. Hall, A.E. Gorbalenya, and J. Ziebuhr. 2005. ADP-ribose-1"-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J. Virol. 79: 12721-12731.
  • Ivanov, K. A., T. Hertzig, M. Rozanov, S. Bayer, V. Thiel, A. E. Gorbalenya, and J. Ziebuhr. 2004. Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proc. Natl. Acad. Sci. USA 101: 12694-12699.
  • Conzelmann, K.-K., N. Visser, P. v. Woensel, H.-J.Thiel. 1993. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 193: 329-339.
Principal investigator:

Dr. Mikhail Matrosovich

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 65166
E-Mail: matrosov(at)staff.uni-marburg(dot)de


Principal investigator:

Prof. Dr. Stefan Bauer

Institut für Immunologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66492
E-Mail: stefan.bauer(at)staff.uni-marburg(dot)de


Research area: Molecular Virology/Molecular Immunology

Humans can be infected by seasonal, pandemic, and zoonotic influenza A viruses (IAVs). The hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of these viruses vary substantially depending on viral host species, evolutionary lineage, and strain. The long-term goal of the project is to characterize how this genetic variation affects viral replication, host range, and pathogenicity. During the first funding period, a large panel of fully characterized recombinant IAVs were generated and used to study effects of HA receptor specificity and membrane fusion activity on viral tropism to epithelial and endothelial cells and sensitivity to antiviral innate immune factors. The Matrosovich group found that the pH optimum of HA-mediated membrane fusion in specific IAVs affects their sensitivity to an interferon-induced antiviral state, and that the high pH fusion pH optimum seen in zoonotic H5N1 and H7N9 viruses is responsible for their enhanced tropism to human endothelial cells. Furthermore, the group discovered that adaptation of avian influenza viruses to pigs under natural conditions requires HA mutations that increase the fusion pH optimum. Finally, preliminary evidence was obtained to suggest a role of viral receptor specificity in IAV interactions with human alveolar macrophages and plasmacytoid dendritic cells.

Project-related publications of the principal investigators:
  • Gerlach T, Hensen L, Matrosovich T, Bergmann J, Winkler M, Peteranderl C, Klenk HD, Weber F, Herold S, Pöhlmann S, Matrosovich M. 2017. pH-optimum of hemagglutinin-mediated membrane fusion determines sensitivity of influenza A viruses to the interferon-induced antiviral state and IFITMs. J. Virol., accepted
  • Gambaryan AS, Matrosovich MN. 2015. What adaptive changes in hemagglutinin and neuraminidase are necessary for emergence of pandemic influenza virus from its avian precursor? Biochemistry (Moscow) 80:872-880.
  • Baumann J, Kouassi NM, Foni E, Klenk HD, Matrosovich M. 2015. H1N1 swine influenza viruses differ from avian precursors by a higher pH optimum of membrane fusion. J Virol 90:1569-1577.
  • Wendel I, Rubbenstroth D, Doedt J, Kochs G, Wilhelm J, Staeheli P, Klenk HD, Matrosovich M. 2015. The avian-origin PB1 gene segment facilitated replication and transmissibility of the H3N2/1968 pandemic influenza virus. J Virol 89:4170-4179.
  • Wendel I, Matrosovich M, Klenk HD. 2015. SnapShot: Evolution of Human Influenza A Viruses. Cell Host & Microbe 17:416-416.e411.
  • Heider A, Mochalova L, Harder T, Tuzikov A, Bovin N, Wolff T, Matrosovich M, Schweiger B. 2015. Alterations in hemagglutinin receptor-binding specificity accompany the emergence of highly pathogenic avian influenza viruses. J Virol 89:5395-5405.
  • Van Poucke S, Doedt J, Baumann J, Qiu Y, Matrosovich T, Klenk HD, Van Reeth K, Matrosovich M. 2015. Role of substitutions in the hemagglutinin in the emergence of the 1968 pandemic influenza virus. J Virol 89:12211-12216.
  • Bottcher-Friebertshauser E, Garten W, Matrosovich M, Klenk HD. 2014. The hemagglutinin: a determinant of pathogenicity. Curr Top Microbiol Immunol 385:3-34.
  • Linster M, Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Manz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. 2014. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 157:329-339.
  • Hogner K, Wolff T, Pleschka S, Plog S, Gruber AD, Kalinke U, Walmrath HD, Bodner J, Gattenlohner S, Lewe-Schlosser P, Matrosovich M, Seeger W, Lohmeyer J, Herold S. 2013. Macrophage-expressed IFN-beta contributes to apoptotic alveolar epithelial cell injury in severe influenza virus pneumonia. Plos Pathog 9:e1003188.
  • Van Poucke S, Uhlendorff J, Wang ZF, Billiau V, Nicholls J, Matrosovich M, Van Reeth K. 2013. Effect of receptor specificity of A/Hong Kong/1/68 (H3N2) influenza virus variants on replication and transmission in pigs. Influenza and Other Respiratory Viruses 7:151-159.
  • Matrosovich M, Herrler G, Klenk HD. 2013. Sialic Acid Receptors of Viruses. Top Curr Chem 20:20.
  • Kolesnikova L, Heck S, Matrosovich T, Klenk HD, Becker S, Matrosovich M. 2013. Influenza virus budding from the tips of cellular microvilli in differentiated human airway epithelial cells. Journal of General Virology 94:971-976.
  • Klenk HD, Garten W, Matrosovich M. 2013. Pathogenesis, p 157-172. In Webster RG (ed), Textbook of Influenza, 2nd Edition. Wiley-Blackwell, Chichester, West Sussex, UK.
  • Crusat M, Liu JF, Palma AS, Childs RA, Liu Y, Wharton SA, Lin YP, Coombs PJ, Martin SR, Matrosovich M, Chen Z, Stevens DJ, Hien VM, Thanh TT, Nhu LNT, Nguyet LA, Ha DQ, van Doorn HR, Hien TT, Conradt HS, Kiso M, Gamblin SJ, Chai WG, Skehel JJ, Hay AJ, Farrar J, de Jong MD, Feizi T. 2013. Changes in the hemagglutinin of H5N1 viruses during human infection - Influence on receptor binding. Virology 447:326-337.
  • Corman VM, Eickmann M, Landt O, Bleicker T, Brunink S, Eschbach-Bludau M, Matrosovich M, Becker S, Drosten C. 2013. Specific detection by real-time reverse-transcription PCR assays of a novel avian influenza A(H7N9) strain associated with human spillover infections in China. Eurosurveillance 18:10-16.
  • Gambaryan, A. S., T. Y. Matrosovich, J. Philipp, V. J. Munster, R. A. Fouchier, G. Cattoli, I. Capua, S. L. Krauss, R. G. Webster, J. Banks, N. V. Bovin, H. D. Klenk, and M. N. Matrosovich. 2012. Receptor-binding profiles of H7 subtype influenza viruses in different host species. J.Virol. 86:4370-4379.
  • Liu, Y., R. A. Childs, T. Matrosovich, S. Wharton, A. S. Palma, W. Chai, R. Daniels, V. Gregory, J. Uhlendorff, M. Kiso, H. D. Klenk, A. Hay, T. Feizi, and M. Matrosovich. 2010. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J.Virol. 84:12069-12074.
  • Childs, R. A., A. S. Palma, S. Wharton, T. Matrosovich, Y. Liu, W. Chai, M. A. Campanero-Rhodes, Y. Zhang, M. Eickmann, M. Kiso, A. Hay, M. Matrosovich, and T. Feizi. 2009. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat.Biotechnol. 27:797-799.
  • Ocana-Macchi, M., M. Bel, L. Guzylack-Piriou, N. Ruggli, M. Liniger, K. C. McCullough, Y. Sakoda, N. Isoda, M. Matrosovich, and A. Summerfield. 2009. Hemagglutinin-dependent tropism of H5N1 avian influenza virus for human endothelial cells. J.Virol. 83:12947-12955.
  • Matrosovich, M., T. Matrosovich, J. Uhlendorff, W. Garten, and H. D. Klenk. 2007. Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium. Virology. 361:384-390.
  • Gambaryan, A., S. Yamnikova, D. Lvov, A. Tuzikov, A. Chinarev, G. Pazynina, R. Webster, M. Matrosovich, and N. Bovin. 2005. Receptor specificity of influenza viruses from birds and mammals: new data on involvement of the inner fragments of the carbohydrate chain. Virology 334:276-283.
  • Matrosovich, M. N., T. Y. Matrosovich, T. Gray, N. A. Roberts, and H. D. Klenk. 2004. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc.Natl.Acad.Sci U.S.A 101:4620-4624.
  • Matrosovich, M., A. Tuzikov, N. Bovin, A. Gambaryan, A. Klimov, M. R. Castrucci, I. Donatelli, and Y. Kawaoka. 2000. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J Virol. 74:8502-8512.
  • Jung S, von Thülen T, Laukemper V, Pigisch S, Hangel D, Wagner H, Kaufmann A, Bauer S. A single naturally occurring 2'-O-methylation converts a TLR7- and TLR8-activating RNA into a TLR8-specific ligand. PLoS One. 2015 Mar 18;10(3):e0120498. doi:10.1371/journal.pone.0120498. eCollection 2015.
  • Oldenburg M, Krüger A, Ferstl R, Kaufmann A, Nees G, Sigmund A, Bathke B, Lauterbach H, Suter M, Dreher S, Koedel U, Akira S, Kawai T, Buer J, Wagner H, Bauer S, Hochrein H, Kirschning CJ. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science. 2012 Aug 31;337(6098):1111-5. doi: 10.1126/science.1220363. Epub 2012 Jul 19.
  • Bauer, S., C. J. Kirschning, H. Hacker, V. Redecke, S. Hausmann, S. Akira, H. Wagner, and G. B. Lipford. 2001. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci U S A 98:9237-42.
  • Hamm, S., A. Heit, M. Koffler, K. M. Huster, S. Akira, D. H. Busch, H. Wagner, and S. Bauer. 2007. Immunostimulatory RNA is a potent inducer of antigen-specific cytotoxic and humoral immune response in vivo. Int Immunol 19:297-304.
  • Hamm, S., E. Latz, D. Hangel, T. Muller, P. Yu, D. Golenbock, T. Sparwasser, H. Wagner, and S. Bauer. 2010. Alternating 2'-O-ribose methylation is a universal approach for generating non-stimulatory siRNA by acting as TLR7 antagonist. Immunobiology 215:559-69.
  • Heil, F., H. Hemmi, H. Hochrein, F. Ampenberger, C. Kirschning, S. Akira, G. Lipford, H. Wagner, and S. Bauer. 2004. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526-9.
  • Heil, F., P. Ahmad-Nejad, H. Hemmi, H. Hochrein, F. Ampenberger, T. Gellert, H. Dietrich, G. Lipford, K. Takeda, S. Akira, H. Wagner, and S. Bauer. 2003. The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur J Immunol 33:2987-97.
  • Jöckel, S., G. Nees, R. Sommer, Y. Zhao, D. Cherkasov, H. Hori, G. Ehm, M. Schnare, M. Nain, A. Kaufmann, and S. Bauer. 2012. The 2'-O-methylation status of a single guanosine controls transfer RNA-mediated Toll-like receptor 7 activation or inhibition. J Exp Med 209:235-41.
  • Jurk, M., F. Heil, J. Vollmer, C. Schetter, A. M. Krieg, H. Wagner, G. Lipford, and S. Bauer. 2002. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848. Nat Immunol 3:499.
  • Rutz, M., J. Metzger, T. Gellert, P. Luppa, G. B. Lipford, H. Wagner, and S. Bauer. 2004. Toll-like receptor 9 binds single-stranded CpG-DNA in a sequence- and pH-dependent manner. Eur J Immunol 34:2541-50.
Principal investigator:

Prof. Dr. Stephan Becker

Sprecher SFB 1021

Institut für Virologie
Philipps-Universität Marburg
Hans-Meerwein-Str. 2
35043 Marburg

Phone: 06421-28 66253
E-Mail:
becker(at)staff.uni-marburg(dot)de


Research area: Molecular Virology

Marburg virus (MARV) causes lethal fever in humans and non-lethal infections in rodents. Sequential passaging of MARV in guinea pigs resulted in a guinea pig-adapted strain that contains 4 non-synonymous mutations and causes lethal disease. Cells of the mononuclear phagocyte system (MPS) were found to be the primary MARV targets in both lethal and non-lethal infection. The Becker group discovered that a single mutation in the viral matrix protein VP40 (D184N) improved the growth of recombinant MARV (rMARVVP40(D184N)) specifically in guinea pig cells. This phenotype correlated with a decreased ability of VP40D184N to suppress viral RNA synthesis in these cells. In primary MPS cells derived from a newly established ex vivo model, rMARVVP40(D184N) had a clear growth advantage over wild-type MARV. This correlated with the observation that rMARVVP40(D184N), in contrast to the non-lethal wild type virus, no longer induced cell death in the infected macrophages or in non-infected bystander cells. Other mutations in the guinea pig-adapted MARV were found to be located in the polymerase (L) coding sequence. One of the mutations located in the polymerase active site was shown to dramatically increase the viral transcription/replication activity.

Project-related publications of the investigator:
  • Dietzel E, Schudt G, Krähling V, Matrosovich M, Becker S. 2016. Functional characterization of adaptive mutations during the West African Ebola virus outbreak. J. Virol. 91:e01913-16.
  • Koehler A, Kolesnikova L, Becker S. 2016. An active site mutation increases the polymerase activity of the guinea pig-lethal Marburg virus. J Gen Virol. 97(10):2494-2500.
  • Koehler A, Kolesnikova L, Welzel U, Schudt G, Herwig A, Becker S. 2016. A Single Amino Acid Change in the Marburg Virus Matrix Protein VP40 Provides a Replicative Advantage in a Species-Specific Manner. J Virol 90:1444-1454.
  • Wolff S, Groseth A, Meyer B, Jackson D, Strecker T, Kaufmann A, Becker S. 2016. The New World arenavirus Tacaribe virus induces caspase-dependent apoptosis in infected cells. J Gen Virol 97:855-866.
  • Dietzel E, Kolesnikova L, Sawatsky B, Heiner A, Weis M, Kobinger GP, Becker S, von Messling V, Maisner A. 2015. Nipah virus matrix protein influences fusogenicity and is essential for particle infectivity and stability. J Virol. 90(5):2514-22.
  • Schudt, G., O. Dolnik, L. Kolesnikova, N. Biedenkopf, A. Herwig and S. Becker. 2015. Transport of Ebolavirus Nucleocapsids Is Dependent on Actin Polymerization: Live-Cell Imaging Analysis of Ebolsvirus-Infected Cells. J. Infect Dis doi: 10.1093/infdis/jiv083
  • Kolesnikova, L., E. Mittler, G. Schudt, H. Shams-Eldin, and S. Becker. 2012. Phosphorylation of Marburg virus matrix protein VP40 triggers assembly of nucleocapsids with the viral envelope at the plasma membrane. Cell Microbiol 14:182-97
  • Mateo, M., C. Carbonnelle, O. Reynard, L. Kolesnikova, K. Nemirov, A. Page, V. A. Volchkova, and V. E. Volchkov. 2011. VP24 is a molecular determinant of Ebola virus virulence in guinea pigs. J Infect Dis 204 Suppl 3:S1011-20.
  • Welsch, S., L. Kolesnikova, V. Krahling, J. D. Riches, S. Becker, and J. A. Briggs. 2010. Electron tomography reveals the steps in filovirus budding. PLoS Pathog 6:e1000875.
  • Krahling, V., O. Dolnik, L. Kolesnikova, J. Schmidt-Chanasit, I. Jordan, V. Sandig, S. Gunther, and S. Becker. 2010. Establishment of fruit bat cells (Rousettus aegyptiacus) as a model system for the investigation of filoviral infection. PLoS Negl Trop Dis 4:e802.
  • Dolnik, O., L. Kolesnikova, and S. Becker. 2008. Filoviruses: Interactions with the host cell. Cell Mol Life Sci 65:756-76.
  • Kolesnikova, L., A. B. Bohil, R. E. Cheney, and S. Becker. 2007. Budding of Marburgvirus is associated with filopodia. Cell Microbiol 9:939-51.
  • Kolesnikova, L., B. Berghofer, S. Bamberg, and S. Becker. 2004. Multivesicular bodies as a platform for formation of the Marburg virus envelope. J Virol 78:12277-87.
  • Kolesnikova, L., S. Bamberg, B. Berghofer, and S. Becker. 2004. The matrix protein of Marburg virus is transported to the plasma membrane along cellular membranes: exploiting the retrograde late endosomal pathway. J Virol 78:2382-93.
  • Ryabchikova, E. I., L.  Kolesnikova, and S. V. Luchko. 1999. An analysis of features of pathogenesis in two animal models of Ebola virus infection. J Infect Dis 179 Suppl 1:S199-202.
  • Mühlberger, E., B. Lotfering, H.-D. Klenk, and S. Becker. 1998. Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72:8756-64.
  • Ryabchikova, E., L. Kolesnikova, M. Smolina, V. Tkachev, L. Pereboeva, S. Baranova, A. Grazhdantseva, and Y. Rassadkin. 1996. Ebola virus infection in guinea pigs: presumable role of granulomatous inflammation in pathogenesis. Arch Virol 141:909-21.
  • Ryabchikova, E., L. Strelets, L. Kolesnikova, O. Pyankov, and A. Sergeev. 1996. Respiratory Marburg virus infection in guinea pigs. Arch Virol 141:2177-90.
Principal investigator:

Prof. Dr. Veronika von Messling

Paul-Ehrlich-Institut
Paul-Ehrlich-Str. 51
63225 Langen

Phone: 06103-777 400
E-mail: veronika.vonmessling(at)pei(dot)de


Research area: Molecular Virology

The genomes of RNA viruses exist as quasispecies, due to the lack of proof-reading ability of their RNA-dependent RNA polymerase. The next-generation sequencing technology has provided new insights into the contribution of this genetic plasticity to adaptation and emergence of resistant variants in vitro, but the role of this plasticity in pathogenesis remains largely unknown. Canine distemper virus (CDV), a non-segmented negative-stranded RNA virus of the Morbillivirus genus in the Paramyxoviridae family, causes a lethal disease in ferrets. The von Messling group has shown that the virus initially amplifies in the immune system and that the subsequent spread to epithelial tissues coincides with the onset of clinical signs and transmission to a new host. Since the infection leads to extensive virus amplification in the respective target tissues, this system is ideally suited to directly characterize the viral genetic plasticity in vivo. First preliminary analyses of the sequence diversity in immune and epithelial tissues revealed distinct differences between virus inoculum and populations found at the end stages of infection. Based on these observations, this project will test the hypothesis that quasispecies contribute to virulence through modulation of dissemination and replication efficiency. It will provide new insights into the contribution of genetic plasticity to Morbillivirus biology, and pinpoint genome regions or motifs that are critical for virulence. The mechanistic concepts and experimental approaches developed in this system may also be applicable to other negative-stranded RNA viruses.

Project-related publications of the investigator:
  • Höper D, Freuling CM, Müller T, Hanke D, von Messling V, Duchow K, Beer M, Mettenleiter TC. High definition viral vaccine strain identity and stability testing using full-genome population data--The next generation of vaccine quality control. Vaccine 2015; 33: 5829-37.
  • Krumm SA, Yan D, Hovingh E, Evers TJ, Enkirch T, Reddy GP, Sun A, Saindane MT,Arrendale RF, Painter G, Liotta DC, Natchus MG, von Messling V, Plemper RK. An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model. Sci. Transl. Med. 2014; 6: 232.
  • Svitek N, Gerhauser I, Goncalves C, Grabski E, Döring M, Kalinke U, Anderson DE, Cattaneo R, von Messling V. Morbillivirus control of the interferon response:relevance of STAT2 and mda5 but not STAT1 for canine distemper virus virulence in ferrets. J. Virol. 2014; 88: 2941-2950.
  • Frenzke M, Sawatsky B, Wong XX, Depeut S, Mateo M, Cattaneo R, von Messling V. Nectin-4-dependent measles virus spread to the cynomolgus monkey tracheal epithelium: role of infecting immune cells infiltrating the lamina propria. 2013; J. Virol. 87: 2526-2534.
  • Mühlebach MD, Mateo M, Sinn PL, Prüfer S, Uhlig KM, Leonard VHJ, Navaratnarajah CK, Frenzke M, Wong XX, Sawatsky B, Ramachandran S, McCray PB, Cichutek K, von Messling V, Lopez M, Cattaneo R. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530-533.
  • Pillet S and von Messling V. Canine distemper virus selectively inhibits apoptosis progression in infected immune cells. J. Virol. 2009; 83: 6279-6287.
  • Anderson D and von Messling V. The region between the canine distemper virus M and F genes modulates virulence by controlling fusion protein expression. J. Virol. 2008; 82: 10510-10518.
  • Bonami F, Rudd PA, and von Messling V. Disease duration determines canine distemper virus neurovirulence. J. Virol. 2007; 81: 12066-12070.
  • Rudd PA, Cattaneo R, and von Messling V. Canine distemper virus uses both the anterograde and the hematogenous pathway for neuroinvasion. J. Virol. 2006; 80: 9361-9370.
  • von Messling V, Milosevic D, Cattaneo R. Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc. Natl. Acad. Sci. 2004; 101: 14216-14221.